Spelling suggestions: "subject:"volymtomografi"" "subject:"datortomografi""
1 |
Deep Learning-based Regularizers for Cone Beam Computed Tomography Reconstruction / Djupinlärningsbaserade regulariserare för rekonstruktion inom volymtomografiSyed, Sabina, Stenberg, Josefin January 2023 (has links)
Cone Beam Computed Tomography is a technology to visualize the 3D interior anatomy of a patient. It is important for image-guided radiation therapy in cancer treatment. During a scan, iterative methods are often used for the image reconstruction step. A key challenge is the ill-posedness of the resulting inversion problem, causing the images to become noisy. To combat this, regularizers can be introduced, which help stabilize the problem. This thesis focuses on Adversarial Convex Regularization that with deep learning regularize the scans according to a target image quality. It can be interpreted in a Bayesian setting by letting the regularizer be the prior, approximating the likelihood with the measurement error, and obtaining the patient image through the maximum-a-posteriori estimate. Adversarial Convex Regularization has previously shown promising results in regular Computed Tomography, and this study aims to investigate its potential in Cone Beam Computed Tomography. Three different learned regularization methods have been developed, all based on Convolutional Neural Network architectures. One model is based on three-dimensional convolutional layers, while the remaining two rely on 2D layers. These two are in a later stage crafted to be applicable to 3D reconstruction by either stacking a 2D model or by averaging 2D models trained in three orthogonal planes. All neural networks are trained on simulated male pelvis data provided by Elekta. The 3D convolutional neural network model has proven to be heavily memory-consuming, while not performing better than current reconstruction methods with respect to image quality. The two architectures based on merging multiple 2D neural network gradients for 3D reconstruction are novel contributions that avoid memory issues. These two models outperform current methods in terms of multiple image quality metrics, such as Peak Signal-to-Noise Ratio and Structural Similarity Index Measure, and they also generalize well for real Cone Beam Computed Tomography data. Additionally, the architecture based on a weighted average of 2D neural networks is able to capture spatial interactions to a larger extent and is adjustable to favor the plane that best shows the field of interest, a possibly desirable feature in medical practice. / Volymtomografi kan användas inom cancerbehandling för att skapa bilder av patientens inre anatomi i 3D som sedan används vid stråldosplanering. Under den rekonstruerande fasen i en skanning används ofta iterativa metoder. En utmaning är att det resulterande inversionsproblemet är illa ställt, vilket leder till att bilderna blir brusiga. För att motverka detta kan regularisering introduceras som bidrar till att stabilisera problemet. Fokus för denna uppsats är Adversarial Convex Regularization som baserat på djupinlärning regulariserar bilderna enligt en målbildskvalitet. Detta kan även tolkas ur ett Bayesianskt perspektiv genom att betrakta regulariseraren som apriorifördelningen, approximera likelihoodfördelningen med mätfelet samt erhålla patientbilden genom maximum-a-posteriori-skattningen. Adversarial Convex Regularization har tidigare visat lovande resultat för data från Datortomografi och syftet med denna uppsats är att undersöka dess potential för Volymtomografi. Tre olika inlärda regulariseringsmetoder har utvecklats med hjälp av faltningsnätverk. En av modellerna bygger på faltning av tredimensionella lager, medan de återstående två är baserade på 2D-lager. Dessa två sammanförs i ett senare skede för att kunna appliceras vid 3D-rekonstruktion, antingen genom att stapla 2D modeller eller genom att beräkna ett viktat medelvärde av tre 2D-modeller som tränats i tre ortogonala plan. Samtliga modeller är tränade på simulerad manlig bäckendata från Elekta. 3D-faltningsnätverket har visat sig vara minneskrävande samtidigt som det inte presterar bättre än nuvarande rekonstruktionsmetoder med avseende på bildkvalitet. De andra två metoderna som bygger på att stapla flera gradienter av 2D-nätverk vid 3D-rekonstruktion är ett nytt vetenskapligt bidrag och undviker minnesproblemen. Dessa två modeller överträffar nuvarande metoder gällande flera bildkvalitetsmått och generaliserar även väl för data från verklig Volymtomografi. Dessutom lyckas modellen som bygger på ett viktat medelvärde av 2D-nätverk i större utsträckning fånga spatiala interaktioner. Den kan även anpassas till att gynna det plan som bäst visar intresseområdet i kroppen, vilket möjligtvis är en önskvärd egenskap i medicinska sammanhang.
|
Page generated in 0.0351 seconds