• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-scale modelling of geomechanical behaviour using the Voronoi cell finite element method (VCFEM) and finite-discrete element method (VCFEM-DEM)

Karchewski, Brandon 11 1900 (has links)
The present work applies the hybrid Voronoi cell finite element method (VCFEM) within geomechanics. Coupled seepage and deformation analysis using the VCFEM incorporating body forces allows accurate analysis of earth dams. The development of a novel approach for simulating granular material behaviour using the combined finite-discrete element method (VCFEM-DEM) provides new insights into strain localization in granular materials. Chapter 1 provides background including summary literature reviews for all concepts in the title including seepage analysis, micromechanical and continuum mechanics theory, Voronoi diagrams, finite elements (FEM), discrete elements (DEM) and combined FEM-DEM. Chapter 1 concludes by detailing the contributions of the present work. Chapter 2 presents the VCFEM for seepage analysis. The numerical examples include an investigation of mesh sensitivity and a comparison of conforming shape functions. Polygonal elements with more than four nodes show a decrease in mesh sensitivity in free surface problems, compared with four-node quadrilateral elements. The choice of conforming shape function within the VCFEM analysis did not affect the results. Chapter 3 formulates and applies the VCFEM-DEM, showing that strain localization effects in granular materials are important at all scales. The VCFEM-DEM captures shear banding in biaxial compression tests, demonstrating that global shear strains and inhomogeneities in the shear stress field present after consolidation are early precursors to the failure mode. At the field scale, strain localization can lead to significant non-uniformity in subsurface stress distribution owing to self-weight. Chapter 4 presents the coupled VCFEM for seepage and deformation. A practical example of the design of an earth dam demonstrates the application of general body forces within a hybrid formulation, notably lacking in the literature. Chapter 5 concludes by summarizing the key observations of the present work, and providing direction for future research. The Appendix provides additional details related to numerical integration within the VCFEM. / Thesis / Doctor of Philosophy (PhD) / The focus of the present work is the simulation of geomechanical behaviour at multiple scales. This ranges from simulating the interaction of grains of sand in a laboratory compression test to the seepage of water through and deformation of a large dam constructed of granular material. The simulations use a numerical tool called the Voronoi cell finite element method (VCFEM), which the present work extends to allow accurate analysis of the flow of fluid through a porous medium, deformation of a granular material under load and coupled analysis of these phenomena. The development and testing of this numerical tool for use in geomechanical analysis is itself a contribution. The present work also contains new insights into how localized stresses and strains in a granular material that are present well before the peak strength can have an important influence on the mode of failure.
2

Multi-scale analysis of elastic and debonding composites by an adaptive multi-level computational model

Raghavan, Prasanna 03 February 2004 (has links)
No description available.
3

Extended voronoi cell finite element model for damage in brittle matrix composites

Li, Shanhu 05 January 2006 (has links)
No description available.
4

Locally enhanced voronoi cell finite element model (LE-VCFEM) for ductile fracture in heterogeneous cast aluminum alloys

Hu, Chao 07 January 2008 (has links)
No description available.
5

Adaptive Multi-level Model for Multi-scale Ductile Fracture Analysis in Heterogeneous Aluminum Alloys

Paquet, Daniel January 2011 (has links)
No description available.

Page generated in 0.0391 seconds