• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 640
  • 145
  • 128
  • 104
  • 40
  • 17
  • 14
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1386
  • 267
  • 266
  • 255
  • 248
  • 205
  • 120
  • 105
  • 102
  • 100
  • 97
  • 96
  • 81
  • 78
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

The anatomy of hyperbolic trajectories in the Gulf of Mexico

Weed, Michael. January 2006 (has links)
Thesis (M.S.)--University of Delaware, 2006. / Principal faculty advisor: A.D. Kirwan, College of Marine and Earth Studies. Includes bibliographical references.
222

Observations, dynamics and predictability of the mesoscale convective vortex event of 10-13 June 2003

Hawblitzel, Daniel Patrick 16 August 2006 (has links)
This study examines the dynamics and predictability of the mesoscale convective vortex (MCV) event of 10-13 June 2003 which occurred during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). The MCV formed from a preexisting upper-level disturbance over the southwest United States on 10 June and matured as it traveled northeastward. The BAMEX field campaign provided a relatively dense collection of upper air observations through dropsondes on 11 June during the mature stage of the vortex. While several previous studies have focused on analysis of the dynamics and thermodynamics of observed and simulated vortices, few have addressed the ability to predict MCVs using numerical models. This event is of particular interest to the study of MCV dynamics and predictability given the anomalously strong and long-lived nature of the circulation and the dense data set. The first part of this study explores the dynamics of this MCV through an in-depth analysis of data from the profiler network and BAMEX dropsonde observations, in addition to the conventional surface and sounding observations as well as radar and satellite images. Next, issues relating to model performance are addressed through anevaluation of two state-of-the-art mesoscale models with varying resolutions. It is determined that the ability of a forecast model to accurately predict this MCV event is directly related to its ability to simulate convection. It is also shown that the convective-resolving Weather Research and Forecast (WRF) model with horizontal grid increments of 4 km displays superior performance in its simulation of this MCV event. Finally, an ensemble of 20 forecasts using mesoscale model MM5 with horizontal grid increments of 10 km are employed to evaluate probabilistically the dynamics and predictability of the MCV through the examination of the ensemble spread as well as the correlations between different forecast variables among ensemble members. It is shown that after MCV development, the ensemble mean performs poorly while individual ensemble members with good forecasts of convection at all stages of the MCV also forecast the midlevel vortex well. Furthermore, correlations among ensemble members generally support the findings in the observational analysis and in previous literature.
223

Spontaneous vortex phase and pinning in ferromagnetic-superconducting systems

Kayali, Mohammad Amin 30 September 2004 (has links)
Heterogeneous ferromagnetic-superconducting systems such as a regular array of ferromagnetic nano dots deposited on the top of a superconducting thin film have attracted many research teams both experimental and theoretical. The interest in these systems does not only stem from being good candidates for technological applications, but also because they represent a new class of physical systems where two competing order parameters can coexist. This work focuses on the theoretica laspects of these systems by studying the static and dynamics of few model systems. In the first part, the static properties of a superconducting thin film interacting with a ferromagnetic texture are considered within the London approximation. In particular, the ferromagnetic textures considered here are a circular dot of submicrometer size with in-plane magnetization, an elliptical dot magnetized in the direction perpendicular to the superconductor, and a ferromagnetic dot magnetized in the direction normal to the superconducting film and containing non magnetic cavities. I also consider the interaction of vortices in the superconductor with a ferromagnetic columnar defect which penetrates the supercondcting film. In each case the vector potential and magnetic field of the ferromagnet in the presence of the superconductor are calculated. Afterward the presence of vortices in the superconductor is assumed and the energy of vortex-texture system is found. The pinning potential and force supplied by the texture are then derived from the energy of interaction between the ferromagnet and superconductor. I show that if the magnetization of the ferromagnet exceeds a critical value then vortices are spontaneously created in the ground state of the system. Such spontaneous creation of vortices is possible mostly in a close vicinity of the superconducting transition temperature Ts. For every case, the threshold value of the magnetization at which vortices start to be spontaneously created in the SC is calculated as a function of the parameters of the texture geometry. The phase diagrams for transitions from vortexless regime to regimes with one or more vortices are determined for all cases. In the second problem, the transport properties of a ferromagnetic superconducting bilayer with alternating magnetization and vortex density are studied within a phenomenological model. I show that pinning forces do not appear for continuous distribution of vortices, so a discrete model for the bilayer system is constructed. Afterward, I calculate the pinning forces acting on vortices and antivortices resulting from highly inhomogeneous distribution of flux lines and prove that this system has strong transport anisotropy. In the absence of random pinning, the system displays a finite resistance for the current in the direction perpendicular to the domains while its resistance vanishes for the parallel current. The transport anisotropy strongly depends on temperature. I study this dependence and show that the ratio of parallel to perpendicular critical current is largest close to the superconducting transition temperature Ts and the vortex disappearance temperature Tv while it has a minimum in between them.
224

Low Reynolds Number Vortex Shedding In Three-dimensional Flow

Chopde, Rahul Siddharth 08 1900 (has links) (PDF)
No description available.
225

Vortex Methods for Fluid Simulation in Computer Graphics

Vines Neuwirth, Mauricio Alfredo 14 January 2013 (has links)
Fluid simulations for computer graphics applications have attracted the attention of many researchers and practitioners due to the enhanced realism that natural phenomena simulation adds to graphical applications. Vortex methods are receiving increasing attention from the computer graphics community for simple and direct modeling of complex flow phenomena such as turbulence. However, vortex methods have not been developed yet to the level of other techniques for fluid simulation in computer graphics. In this work we present a novel simulation framework to model inviscid flows using Lagrangian vortex particle methods. We introduce novel stable methods to solve the vorticity flow equations that produce highly detailed visual fluid simulations. We incorporate the full interplay of solids and fluids in our framework. The coupling between free-form solids, represented by arbitrary surface meshes and fluids simulated with vortex methods, leads to visually rich simulations. Previous vortex simulators only focus on modeling the solid as a boundary for the flow. We model solid boundaries using an extended potential flow at the solid surface coupled with a boundary layer simulation. This allows the accurate simulation of two processes of visual interest. The first is the introduction of surface vorticity in the main flow as turbulence (vortex shedding). The second is the motion of the solid induced by fluid forces, which is calculated from the dynamics of vorticity in the flow and the rate of vorticity creation at solid surfaces. We demonstrate high quality results of our methods simulating flows around solid objects and solid object propulsion due to flows. This work ameliorates one of the important omissions in the development of vortex methods for computer graphics, which is the simulation of two-way coupling of solids and fluids.
226

Leading Edge Flow Structure of a Dynamically Pitching NACA 0012 Airfoil

Pruski, Brandon 14 March 2013 (has links)
The leading edge flow structure of the NACA 0012 airfoil is experimentally investigated under dynamic stall conditions (M = 0.1; α = 16.7◦, 22.4◦; Rec = 1× 10^6) using planar particle image velocimetry. The airfoil was dynamically pitched about the 1/4 chord at a reduced frequency, k = 0.1. As expected, on the upstroke the flow remains attached in the leading edge region above the static stall angle, whereas during downstroke, the flow remains separated below the static stall angle. A phase averaging procedure involving triple velocity decomposition in combination with the Hilbert transform enables the entire dynamic stall process to be visualized in phase space, with the added benefit of the complete phase space composed of numerous wing oscillations. The formation and complex evolution of the leading edge vortex is observed. This vortex is seen to grow, interact with surrounding vorticity, detach from the surface, and convect downstream. A statistical analysis coupled with instantaneous realizations results in the modification of the classical dynamic stall conceptual model, specifically related to the dynamics of the leading edge vortex.
227

Dependence of arc interrupting capability on spatial distribution of airflow velocity in air-blast flat-type quenching chamber

Yokomizu, Yasunobu, Matsumura, Toshiro, Matsuda, Akiji, Ohno, Hideyuki 01 1900 (has links)
No description available.
228

Gravity waves from vortex dipoles and jets

Wang, Shuguang 15 May 2009 (has links)
The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here. Within these dipoles, inertia-gravity waves with intrinsic frequencies 1-2 times the Coriolis parameter are simulated in the jet exit region. The ray tracing analysis reveals strong variation of wave characteristics along ray paths. The dependence of wave amplitude on the Rossby number is examined through experiments in which the two vortices are initially separated by a large distance but subsequently approach each other and form a vortex dipole with an associated amplifying localized jet. The amplitude of stationary gravity waves in the simulations with a 90-km grid spacing increases nearly linearly with the square of the Rossby number but significantly more rapidly when smaller grid spacing is used. To further address the source mechanism of the gravity waves within the vortex dipole, a linear numerical framework is developed based on the framework proposed by Plougonven and Zhang (2007). Using the nonlinearly balanced fields as the basic state and driven by three types of large scale forcing, the vorticity, divergence and thermodynamic forcing, this linear model is utilized to obtain linear wave responses. The wave packets in the linear responses compare reasonably well with the MM5 simulated gravity waves. It is suggested that the vorticity forcing is the leading contribution to both gravity waves in the jet exit region and the ascent/descent feature in the jet core. This linear model is also adopted to study inertia-gravity waves in the vicinity of a baroclinic jet during the life cycle of an idealized baroclinic wave. It is found that the thermodynamic forcing and the vorticity forcing are equally important to the gravity waves in the low stratosphere, but the divergence forcing is again playing a lesser role. Two groups of wave packets are present in the linear responses; their sources appear to locate either near the surface front or near the middle/upper tropospheric jet.
229

Numerical study of fluid elastic vibration of a circular cylinder in cross flow

Chan, Chih-Wei 25 August 2004 (has links)
In the study, we confer with the effect of the circular cylinder for various flow fields, and investigate the phenomenon of the vortex shedding and fluid elastic instabilities. First, in the aspect of the vortex shedding, we observe the wake behind the cylinder after varying the locations of orifices on the cylinder and the forms of momentum addition, and the variation of the lift and drag coefficient can be obtained by using the commercial software STAR-CD. In the further study, we make the type of flow field to be a shear flow and build the database of the aerodynamic coefficients in different shear parameter and Reynolds numbers; furthermore, the database is an important basis for us to conjecture the surface force on the cylinder, and analyze the size of oscillations and the orbit that is caused by the shear parameter, mass ratio and damping factor respectively.
230

A numerical study of steady-state vortex configurations and vortex pinning in type-II superconductors

Kim, Sangbum 12 April 2006 (has links)
In part I, a numerical study of the mixed states in a mesoscopic type-II superconducting cylinder is described. Steady-state configurations and transient behavior of the magnetic vortices for various values of the applied magnetic field H are presented. Transitions between different multi-vortex states as H is changed is demonstrated by abrupt changes in vortex configurations and jumps in the B vs H plot. An efficient scheme to determine the equilibrium vortex configuration in a mesoscopic system at any given applied field, not limited to the symmetry of the system, is devised and demonstrated. In part II, a superconducting thin film is subject to a non-uniform magnetic field from a vertical magnetic dipole, consisting of two magnetic monopoles of opposite charges. For a film with constant thickness and with no pins, it has been found that the film carries two pairs of vortex-antivortex in the steady state in the imposed flux range of 2.15 < (Phi)+ < 2.90 (in units of flux quantum) and no vortex at all for (Phi)+ <= 2.15. Transitions from a superconducting state with 3 pairs of vortex-antivortex to one with 2 pairs, where a pair of vortex-antivortex annihilates, have been observed in the pseudo-time sequence. With a perturbation with antidots (holes), vortexantivortex pair has been created for lower magnetic fluxes down to (Phi)+ = 1.3. In the sample of size 16(Xi) x 16(Xi), the attraction force between the vortex and antivortex always dominates over the pinning force, so that they eventually come out of pins, move toward each other, and annihilate each other. The annihilation rate, measured with time taken for the annihilation, is reduced noticeably by the increase of the distance between pins, or the increase in the pin size. A simulation of the magnetic vortex pinning in the sample of size 32(Xi) x 32(Xi) suggests we are likely to achieve pinning of the vortex-antivortex pair with the sample size around this and vortex-antivortex separation of 22(Xi). Using this sample as a template, the maximum density of pinned vortices achievable is calculates to be about 7.6 x 10^14 vortices/m2 for (Xi) =~ 1.6A°.

Page generated in 0.0267 seconds