• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 5
  • 2
  • Tagged with
  • 29
  • 29
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The performance of the Wells air turbine in oscillating flow conditions

Ombaka, O. O. January 1984 (has links)
No description available.
2

Leading Edge Flow Structure of a Dynamically Pitching NACA 0012 Airfoil

Pruski, Brandon 14 March 2013 (has links)
The leading edge flow structure of the NACA 0012 airfoil is experimentally investigated under dynamic stall conditions (M = 0.1; α = 16.7◦, 22.4◦; Rec = 1× 10^6) using planar particle image velocimetry. The airfoil was dynamically pitched about the 1/4 chord at a reduced frequency, k = 0.1. As expected, on the upstroke the flow remains attached in the leading edge region above the static stall angle, whereas during downstroke, the flow remains separated below the static stall angle. A phase averaging procedure involving triple velocity decomposition in combination with the Hilbert transform enables the entire dynamic stall process to be visualized in phase space, with the added benefit of the complete phase space composed of numerous wing oscillations. The formation and complex evolution of the leading edge vortex is observed. This vortex is seen to grow, interact with surrounding vorticity, detach from the surface, and convect downstream. A statistical analysis coupled with instantaneous realizations results in the modification of the classical dynamic stall conceptual model, specifically related to the dynamics of the leading edge vortex.
3

Experimental Study of Effects of Leading-Edge Structures on the Dynamic Stall of a Vertical Axis Wind Turbine Airfoil

Zhao, Jiaming January 2020 (has links)
Vertical axis wind turbine, developed as one of the main methods to utilize the wind energy, has a promising future; however, the major issue to limit its performance is the uneven loading on the blade during operation. Flow control mechanisms have been employed in the aerodynamic field to improve the performance of airfoils. In this study, two types of leading-edge structures, including flexible leading-edge and leading-edge roughness, are experimentally investigated to analyze their effects on altering the aerodynamic characteristics of NACA 0018 airfoil under steady flow condition and dynamic pitching condition. Current experimental results indicate that 1) during the steady flow condition, both of leading-edge structures contribute to the delay of the static stall; 2) for the dynamic pitching process, the leading-edge structures either delayed the dynamic stall angle or increased the area of the coefficient of pressure loop as a function of angle of attack.
4

Dynamic Stall Characteristics of Pitching Finite-Aspect-Ratio Wings

Ullah, Al Habib January 2021 (has links)
In this study, an experimental investigation was performed to characterize the dynamic stall of pitching wings and provide confirmation of the existence of the arch-shaped vortex for moderate sweep wing. Dynamic stall is a complex flow, which happens because of a sudden change of incident angle during the pitching motion. The pitching motion of a wing can cause instability in the shear layer and generate the separation burst at certain angles. For a pitching wing, the dynamic stall vortex is characterized by the formation of an arch-shaped vortex to the evolution of a ring-shaped vortex. The leg of the arch-shaped vortex causes a negative pressure region on the airfoil surface and can, in fact, generate greater lift. However, in certain conditions, the detachment of the arch-shaped vortex from the airfoil surface can cause high pressure and vibration in the structures. The formation of the arch-shaped vortex and its evolution were systematically investigated using cutting-edge flow diagnostic techniques, and the physics of the dynamic stall is explained in addition to providing the confirmation of the theory developed based on Computational Fluid Dynamics. The study was done using Particle Image Velocimetry (PIV) and Pressure-Sensitive Paint for three sweep angle wings. The wings, with an aspect ratio of AR=4 and a NACA 0012 section assembled with round-tip, are considered for the current experimental study. The sweep angles = 0, 15, and 30 degrees were considered to compare the flow phenomena. The PIV results show the formation of a laminar separation bubble and its evolution to a dynamic stall vortex. The increase of sweep angle causes the formation of such vortices towards the wing tip. In the process of finding the footprint of the vortices and pressure distribution on the surface of the wings, a single-shot lifetime method using fast porous paint was used. The results show the existence of suction pressure and later grows towards the trailing edge of the wing due to the formation of a dynamic stall vortex. In addition, at Re=2x10^5 and reduced frequency k=0.2, a moderate sweep airfoil shows the apparent footprint of the arch-shaped vortex, which confirms the current theory.
5

Particle Image Velocimetry Near the Leading Edge of a Sikorsky SSC-A09 Wing During Dynamic Stall

Vannelli, Rachel Renee 2011 December 1900 (has links)
Dynamic stall has proven to be a complex problem in helicopter aerodynamics because it limits the helicopter flight regime. Dynamic stall is characterized by drastic increases in lift and a delay of stall due to rapid pitching motions of aerodynamic surfaces. Prediction and control of dynamic stall requires an understanding of the leading edge flow structure. An investigation was conducted of dynamic stall near the leading edge of a large-scale Sikorsky SSC-A09 airfoil, dynamically pitching about its quarter chord, under realistic helicopter flight conditions (M_infinity = 0.1, k = 0.1, Re_c = 1.0 x 10^6). A testing model with a chord of 0.46 m and a span of 2.13 m was designed and constructed for experimentation in the Dynamic Stall Facility at Texas A&M University. Particle image velocimetry data were recorded for the first 15% of the airfoil chord. Mean velocities, Reynolds stresses, and vorticity were computed. Analyses revealed that during the upstroke, stall onset is delayed in the leading edge region and the first indications of separation are observed at 18 degree angle of attack. The edge of the boundary layer has been characterized for alpha = 18 degrees. The roles of the Reynolds stresses and vorticity are examined.
6

Modeling dynamic stall of SC-1095 airfoil at high mach number

Clark, Brian 26 January 2010 (has links)
In this thesis, the Leishman-Beddoes method of determining airloads for an airfoil undergoing dynamic stall is studied over a range of Mach numbers. To validate the method for conditions where little experimental data is available, a computational fluid dynamics solver is utilized to provide airload predictions for comparison to the Leishman-Beddoes results. It is found that even for high Mach numbers the Leishman-Beddoes method provides reliable predictions for lift coefficient. However, at the higher Mach numbers pitching moment is sometimes overpredicted at high angle of attack. This is seemingly due to an inability to accurately determine the center of pressure in the high speed unsteady flow environment.
7

Numerical investigation on the use of multi-element blades in vertical-axis wind turbines

Bah, Elhadji Alpha Amadou 08 June 2015 (has links)
The interest in sustainable forms of energy is being driven by the anticipated scarcity of traditional fossil fuels over the coming decades. There is also a growing concern about the effects of fossil fuel emissions on human health and the environment. Many sources of renewable energy are being researched and implemented for power production. In particular, wind power generation by horizontal- and vertical-axis wind turbines is very popular. Vertical-axis wind turbines (VAWTs) have a relative construction simplicity compared to horizontal-axis wind turbines (HAWTs). However, VAWTs present specific challenges that may hinder their performance. For instance, they are strongly affected by dynamic stall. A significant part of the kinetic energy contained in the oncoming wind is lost in swirl and vortices. As a result, VAWTs have lower power production compared to HAWTs. First, the present work is aimed at the study of the aerodynamics of straight-bladed VAWTs (SB-VAWTs). Empirical calculations are conducted in a preliminary work. Then a two-dimensional double multiple streamtube (DMST) approach supported by a two-dimensional numerical study is implemented. The dynamic stall and aerodynamic performance of the rotor are investigated. A VAWT-fitted dynamic stall model is implemented. Computational fluid dynamics (CFD) simulations are conducted to serve as reference for the DMST calculations. This three-pronged approach allows us to efficiently explore multiple configurations. The dynamic stall phenomenon is identified as a primary cause of performance loss. The results in this section validate the DMST model as a good replacement for CFD analysis in early phase design provided that a good dynamic stall model is used. After having identify the primary cause of performance loss, the goal is to investigate the use to dual-element blades for alleviating the effect of dynamic stall, thereby improving the performance of the rotor. The desirable airfoil characteristics are defined and a parametric analysis conducted. In the present study the parameters consists of the size of the blade elements, the space between them, and their relative orientation. The performance of the rotor is calculated and compared to the baseline. The results highlight the preeminence of the two-element configuration over the single-element provided that the adequate parametric study is conducted beforehand. A performance enhancement is obtained over a large range of tip speed ratios. The starting characteristics and the operation stability are also improved. Finally, an economic analysis is conducted to determine the cost of energy and thus the financial viability of such a project. The Great Coast of Senegal is selected as site of operation. The energy need and sources of this region are presented along with its wind energy potential. The cost evaluation shows the economic viability by comparing the cost of energy to the current energy market prices.
8

Active Control of Flow over an Oscillating NACA 0012 Airfoil

Castañeda Vergara, David Armando 27 August 2020 (has links)
No description available.
9

Flow Control of Compressible Dynamic Stall using Vortex Generator Jets

Naigle, Shawn Christopher 12 September 2016 (has links)
No description available.
10

Unsteady Flow Separation Control over a NACA 0015 using NS-DBD Plasma Actuators

Singhal, Achal Sudhir 23 May 2017 (has links)
No description available.

Page generated in 0.0349 seconds