• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 5
  • 2
  • Tagged with
  • 29
  • 29
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental analysis of the vorticity and turbulent flow dynamics of a pitching airfoil at realistic flight (helicopter) conditions

Sahoo, Dipankar 10 October 2008 (has links)
Improved basic understanding, predictability, and controllability of vortex-dominated and unsteady aerodynamic flows are important in enhancement of the performance of next generation helicopters. The primary objective of this research project was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions. An experimental program was performed on a large-scale (C = 0.45 m) dynamically pitching NACA 0012 wing operating in the Texas A&M University large-scale wind tunnel. High-resolution particle image velocimetry data were acquired on the first 10-15% of the wing. Six test cases were examined including the unsteady (k>0) and steady (k=0) conditions. The relevant mechanical, shear and turbulent time-scales were all of comparable magnitude, which indicated that the flow was in a state of mechanical non-equilibrium, and the expected flow separation and reattachment hystersis was observed. Analyses of the databases provided new insights into the leading-edge Reynolds stress structure and the turbulent transport processes. Both of which were previously uncharacterized. During the upstroke motion of the wing, a bubble structure formed in the leading-edge Reynolds shear stress. The size of the bubble increased with increasing angle-of-attack before being diffused into a shear layer at full separation. The turbulent transport analyses indicated that the axial stress production was positive, where the transverse production was negative. This implied that axial turbulent stresses were being produced from the axial component of the mean flow. A significant portion of the energy was transferred to the transverse stress through the pressure-strain redistribution, and then back to the transverse mean flow through the negative transverse production. An opposite trend was observed further downstream of this region.
12

Experimental analysis of the vorticity and turbulent flow dynamics of a pitching airfoil at realistic flight (helicopter) conditions

Sahoo, Dipankar 10 October 2008 (has links)
Improved basic understanding, predictability, and controllability of vortex-dominated and unsteady aerodynamic flows are important in enhancement of the performance of next generation helicopters. The primary objective of this research project was improved understanding of the fundamental vorticity and turbulent flow physics for a dynamically stalling airfoil at realistic helicopter flight conditions. An experimental program was performed on a large-scale (C = 0.45 m) dynamically pitching NACA 0012 wing operating in the Texas A&M University large-scale wind tunnel. High-resolution particle image velocimetry data were acquired on the first 10-15% of the wing. Six test cases were examined including the unsteady (k>0) and steady (k=0) conditions. The relevant mechanical, shear and turbulent time-scales were all of comparable magnitude, which indicated that the flow was in a state of mechanical non-equilibrium, and the expected flow separation and reattachment hystersis was observed. Analyses of the databases provided new insights into the leading-edge Reynolds stress structure and the turbulent transport processes. Both of which were previously uncharacterized. During the upstroke motion of the wing, a bubble structure formed in the leading-edge Reynolds shear stress. The size of the bubble increased with increasing angle-of-attack before being diffused into a shear layer at full separation. The turbulent transport analyses indicated that the axial stress production was positive, where the transverse production was negative. This implied that axial turbulent stresses were being produced from the axial component of the mean flow. A significant portion of the energy was transferred to the transverse stress through the pressure-strain redistribution, and then back to the transverse mean flow through the negative transverse production. An opposite trend was observed further downstream of this region.
13

Radial flow effects on a retreating rotor blade

Shankare Gowda, Vrishank Raghav 08 June 2015 (has links)
This work studies the effects of radial flow on the aerodynamic phenomena occurring on a retreating blade with a focus on dynamic stall and reverse flow as applied to both a helicopter rotor in forward flight and a wind turbine operating at a yaw angle. While great progress has been made in understanding the phenomenon of two-dimensional dynamic stall, the effect of rotation on the dynamic stall event is not well understood. Experiments were conducted on a rigid two bladed teetering rotor at high advance ratios in a low speed wind tunnel. Particle image velocimetry (PIV) measurements were used to quantify the flow field at several azimuthal angles on the rotating blade during the dynamic stall event. The effect of centrifugal forces induced ``pure'' radial velocity on the dynamic stall event at 270 degrees azimuth was studied in detail. Further investigation of the radial flow field suggested that the mean radial velocity attenuated on moving outboard due to an apparent shear layer instability and it was demonstrated to be of first order importance in the flow field. These radial flow results prompted an exploration of the flow over a rotating disk to establish similarities of the radial flow over rotating blade in separated flow to that over a rotating disk in separated flow. While a greater part of this work focused on aspects of dynamic stall on the retreating blade, the final parts focus on the exotic flow regime of reverse flow (characterized by flow from the trailing edge to the leading edge of the blade). Aerodynamic loads measurement and surface flow visualization via tufts are used to first quantify the behavior of a static yawed blade in reverse flow. PIV measurements are then used on a static yawed blade and a rotating blade in reverse flow conditions to ascertain the effects of rotation on reverse flow.
14

Investigation of Transition and Vortex Systems of a Dynamically Pitching Airfoil Under the Free-stream Turbulence Conditions

January 2017 (has links)
abstract: The effect of reduced frequency on dynamic stall behavior of a pitching NACA0012 airfoil in a turbulent wake using Direct Numerical Simulations is presented in the current study. Upstream turbulence with dynamically oscillating blades and airfoils is associated with ambient flow unsteadiness and is encountered in many operating conditions. Wake turbulence, a more realistic scenario for airfoils in operation, is generated using a small solid cylinder placed upstream, the vortices shed from which interact with the pitching airfoil affecting dynamic stall behavior. A recently developed moving overlapping grid approach is used using a high-order Spectral Element Method (SEM) for spatial discretization combined with a dynamic time-stepping procedure allowing for up to third order temporal discretization. Two cases of reduced frequency (k = 0:16 and 0:25) for airfoil oscillation are investigated and the change in dynamic stall behavior with change in reduced frequency is studied and documented using flow-fields and aerodynamic coefficients (Drag, Lift and Pitching Moment) with a focus on understanding vortex system dynamics (including formation of secondary vortices) for different reduced frequencies and it’s affect on airfoil aerodynamic characteristics and fatigue life. Transition of the flow over the surface of an airfoil for both undisturbed and disturbed flow cases will also be discussed using Pressure coefficient and Skin Friction coefficient data for a given cycle combined with a wavelet analysis using Morse wavelets in MATLAB. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2017
15

Nanosecond Dielectric Barrier Discharge Plasma Actuator Flow Control ofCompressible Dynamic Stall

Frankhouser, Matthew William January 2015 (has links)
No description available.
16

3D Dynamic Stall Simulation of Flow over NACA0012 Airfoil at 10⁵ and 10⁶ Reynolds Numbers

Kasibhotla, Venkata ravishankar 03 April 2014 (has links)
The work presented in this thesis attempts to provide an understanding of the physics behind the dynamic stall process by simulating the flow past pitching NACA-0012 airfoil at 100,000 and 1 million Reynolds number based on the chord length of the airfoil and at different reduced frequencies of 0.188 and 0.25 respectively in a three dimensional flow field. The mean angles of attack are 12 deg. and 15 deg. and the amplitudes of pitching are 6 deg. and 10 deg. respectively. The turbulence in the flow field is resolved using large eddy simulations with dynamic Smagorinsky model at the sub grid scale. The lift hysteresis plots of this simulation for both the configurations are compared with the corresponding experiments. The development of dynamic stall vortex, vortex shedding and reattachment as predicted by the present study are discussed in detail. There is a fairly good match between the predicted and experimentally measured lift coefficient during the upstroke for both cases. The net lift coefficient for the Re = 100,000 case during downstroke matches with the corresponding experimental data, the present study under-predicts the lift coefficient as compared to the experimental values at the start of downstroke and over-estimates for the remaining part of the downstroke. The trend of the lift coefficient hysteresis plot with the experimental data for the Re = 1 million case is also similar. This present simulations have shown that the downstroke phase of the pitching motion is strongly three dimensional and is highly complex, whereas the flow is practically two dimensional during the upstroke. / Master of Science
17

On The Characterization and Modeling Of Unsteady Aerodynamic Systems In Extraterrestrial Environments

Farrell, Wayne Williamtine 01 January 2024 (has links) (PDF)
The history and trajectory of the human race is inseparable from our innate need to explore the unknown. As human exploration drives boundless new insights into the universe, characterization and accurate modeling methods are required to develop the next generation of exploratory vehicles to map and analyze foreign lands. As such the presented work looks to provide characterization and modeling approaches for unsteady aerodynamic phenomena in the extraterrestrial environments of Mars and Titan. Specifically, unsteady aerodynamic loads including dynamic stall are characterized using high-fidelity numerical experiments to better understand the effects of low Reynolds number and high Mach number flows on the process. Additionally, modeling of unsteady aerodynamic behavior at low Reynolds numbers similar to those observed when designing the Mars ingenuity rotorcraft are developed and extensively evaluated. Lastly, the characterization and multi-fidelity modeling of unsteady aerodynamic effects under Titan atmospheric conditions is conducted for a coaxial rotor system.
18

Aerodynamics of Vertical Axis Wind Turbines : Development of Simulation Tools and Experiments

Dyachuk, Eduard January 2015 (has links)
This thesis combines measurements with the development of simulation tools for vertical axis wind turbines (VAWT). Numerical models of aerodynamic blade forces are developed and validated against experiments. The studies were made on VAWTs which were operated at open sites. Significant progress within the modeling of aerodynamics of VAWTs has been achieved by the development of new simulation tools and by conducting experimental studies.         An existing dynamic stall model was investigated and further modified for the conditions of the VAWT operation. This model was coupled with a streamtube model and assessed against blade force measurements from a VAWT with curved blades, operated by Sandia National Laboratories. The comparison has shown that the accuracy of the streamtube model has been improved compared to its previous versions. The dynamic stall model was further modified by coupling it with a free vortex model. The new model has become less dependent on empirical constants and has shown an improved accuracy.     Unique blade force measurements on a 12 kW VAWT were conducted. The turbine was operated north of Uppsala. Load cells were used to measure the forces on the turbine. A comprehensive analysis of the measurement accuracy has been performed and the major error sources have been identified. The measured aerodynamic normal force has been presented and analyzed for a wide range of operational conditions including dynamic stall, nominal operation and the region of high flow expansion. The improved vortex model has been validated against the data from the new measurements. The model agrees quite well with the experiments for the regions of nominal operation and high flow expansion. Although it does not reproduce all measurements in great detail, it is suggested that the presented vortex model can be used for preliminary estimations of blade forces due to its high computational speed and reasonable accuracy.
19

Simulation et optimisation de forme d'hydroliennes à flux transverse / Simulation and shape optimization of vertical axis hydrokinetic turbines

Guillaud, Nathanaël 29 March 2017 (has links)
Dans le cadre de la production d'électricité par énergie renouvelable, cette thèse a pour objectif de contribuer à l'amélioration des performances hydrodynamiques des hydroliennes à flux transverse conçues par HydroQuest. Pour y parvenir, deux axes d'étude principaux sont proposés. Le premier consiste à améliorer la compréhension de la performance de l'hydrolienne et de l'écoulement en son sein par voie numérique. L'influence du paramètre d'avance ainsi que celle de la solidité de l'hydrolienne sont étudiées. Les écoulements mis en jeux étant complexes, une méthode de type Simulation des Granges Échelles 3D est utilisée afin de les restituer au mieux. Le phénomène de décrochage dynamique, qui apparaît pour certains régimes de fonctionnement de l'hydrolienne, fait l'objet d'une étude à part entière sur un cas de profil oscillant.Le second axe se concentre sur les carénages de l’hydrolienne qui font l'objet d'une procédure d'optimisation numérique. Afin de pouvoir réaliser les nombreuses simulations requises en un temps réaliste, des méthodes de type Unsteady Reynolds-Averaged Navier-Stokes 2D moins coûteuses et fournissant une précision suffisante pour ce type d'étude sont utilisées. / Within the renewable electricity production framework, this study aims to contribute to the efficiency improvement of the Vertical Axis Hydrokinetic Turbines designed by HydroQuest. To achieve this objective, two approaches are used. The first consists in the improvement of the comprehension of the turbine efficiency such as the flow through the turbine by numerical means. The influence of the tip speed ratio such as the turbine soldity are investigated. The flow through the turbine is complex. A 3D Large Eddy Simulation type is thus used. The dynamic stall phenomenon which could occur in Vertical Axis Hydrokinetic Turbines is also studied in a oscillating blade configuration.The second approach consists in the numerical optimization of the turbine channeling device. To perform the high number of simulations required, a 2D Unsteady Reynolds-Averaged Navier-Stokes simulation type is used.
20

Modeling Dynamic Stall for a Free Vortex Wake Model of a Floating Offshore Wind Turbine

Gaertner, Evan M 07 November 2014 (has links)
Floating offshore wind turbines in deep waters offer significant advantages to onshore and near-shore wind turbines. However, due to the motion of floating platforms in response to wind and wave loading, the aerodynamics are substantially more complex. Traditional aerodynamic models and design codes do not adequately account for the floating platform dynamics to assess its effect on turbine loads and performance. Turbines must therefore be over designed due to loading uncertainty and are not fully optimized for their operating conditions. Previous research at the University of Massachusetts, Amherst developed the Wake Induced Dynamics Simulator, or WInDS, a free vortex wake model of wind turbines that explicitly includes the velocity components from platform motion. WInDS rigorously accounts for the unsteady interactions between the wind turbine rotor and its wake, however, as a potential flow model, the unsteady viscous response in the blade boundary layer is neglected. To address this concern, this thesis presents the development of a Leishman-Beddoes dynamic stall model integrated into WInDS. The stand-alone dynamic stall model was validated against two-dimensional unsteady data from the OSU pitch oscillation experiments and the coupled WInDS model was validated against three-dimensional data from NREL’s UAE Phase VI campaign. WInDS with dynamic stall shows substantial improvements in load predictions for both steady and unsteady conditions over the base version of WInDS. Furthermore, use of WInDS with the dynamic stall model should provide the necessary aerodynamic model fidelity for future research and design work on floating offshore wind turbines.

Page generated in 0.0297 seconds