• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D Dynamic Stall Simulation of Flow over NACA0012 Airfoil at 10⁵ and 10⁶ Reynolds Numbers

Kasibhotla, Venkata ravishankar 03 April 2014 (has links)
The work presented in this thesis attempts to provide an understanding of the physics behind the dynamic stall process by simulating the flow past pitching NACA-0012 airfoil at 100,000 and 1 million Reynolds number based on the chord length of the airfoil and at different reduced frequencies of 0.188 and 0.25 respectively in a three dimensional flow field. The mean angles of attack are 12 deg. and 15 deg. and the amplitudes of pitching are 6 deg. and 10 deg. respectively. The turbulence in the flow field is resolved using large eddy simulations with dynamic Smagorinsky model at the sub grid scale. The lift hysteresis plots of this simulation for both the configurations are compared with the corresponding experiments. The development of dynamic stall vortex, vortex shedding and reattachment as predicted by the present study are discussed in detail. There is a fairly good match between the predicted and experimentally measured lift coefficient during the upstroke for both cases. The net lift coefficient for the Re = 100,000 case during downstroke matches with the corresponding experimental data, the present study under-predicts the lift coefficient as compared to the experimental values at the start of downstroke and over-estimates for the remaining part of the downstroke. The trend of the lift coefficient hysteresis plot with the experimental data for the Re = 1 million case is also similar. This present simulations have shown that the downstroke phase of the pitching motion is strongly three dimensional and is highly complex, whereas the flow is practically two dimensional during the upstroke. / Master of Science
2

Unsteady Aerodynamic and Aeroelastic Analysis of Flapping Flight

Gopalalkrishnan, Pradeep 22 January 2009 (has links)
The unsteady aerodynamic and aeroelastic analysis of flapping flight under various kinematics and flow parameters is presented in this dissertation. The main motivation for this study arises from the challenges facing the development of micro air vehicles. Micro air vehicles by requirement are compact with dimensions less than 15-20 cm and flight speeds of around 10-15 m/s. These vehicles operate in low Reynolds number range of 10,000 to 100,000. At these low Reynolds numbers, the aerodynamic efficiency of conventional fixed airfoils significantly deteriorates. On the other hand, flapping flight employed by birds and insects whose flight regime coincides with that of micro air vehicles offers a viable alternate solution. For the analysis of flapping flight, a boundary fitted moving grid algorithm is implemented in a flow solver, GenIDLEST. The dynamic movement of the grid is achieved using a combination of spring analogy and trans-finite interpolation on displacements. The additional conservation equation of space required for moving grid is satisfied. The solver is validated with well known flow problems such as forced oscillation of a cylinder, a heaving airfoil, a moving indentation channel, and a hovering fruitfly. The performance of flapping flight is analyzed using Large Eddy Simulation (LES) for a wide range of Reynolds numbers and under various kinematic parameters. A spiral Leading Edge Vortex (LEV) forms during the downstroke due to the high angle of attack, which results in high force production. A strong spanwise flow of the order of the flapping velocity is observed along the core of the LEV. In addition, the formation of a negative spanwise flow is observed due to the tip vortex, which slows down the removal of vorticity from the LEV. This leads to the instability of the LEV at around mid-downstroke. Analysis with different rotation kinematics shows that a continuous rotation results in better propulsive efficiency as it generates thrust during the entire flapping cycle. Analysis with different angles of attack shows that a moderate angle of attack which results in complete shedding of the LEV offers high propulsive efficiency. The analysis of flapping flight at Reynolds numbers ranging from 100 to 100,000 shows that higher lift and thrust values are obtained for Re?100. The critical reasons are that at higher Reynolds numbers, the LEV is closer to the surface and as it sheds and convects it covers most of the upper surface. However, the Reynolds number has no or little effect on the lift and thrust as identical values are obtained for Re=10,000 and 100,000. The analysis with different tip shapes shows that tip shapes do not have a significant effect on the performance. Introduction of stroke deviation to kinematics leads to drop in average lift as wing interacts with the LEV shed during the downstroke. A linear elastic membrane model with applied aerodynamic load is developed for aeroelastic analysis. Analysis with different wing stiffnesses shows that the membrane wing outperforms the rigid wing in terms of lift, thrust and propulsive efficiency. The main reason for the increase in force production is attributed to the gliding of the LEV along the camber, which results in a high pressure difference across the surface. In addition, a high stiffness along the spanwise direction and low stiffness along the chordwise direction results in a uniform camber and high lift and thrust production. / Ph. D.

Page generated in 0.0867 seconds