Spelling suggestions: "subject:"gerotor"" "subject:"birotor""
1 |
Vertical Axis Wind Turbines : Tower Dynamics and NoiseMöllerström, Erik January 2015 (has links)
Vertical axis wind turbines (VAWTs) have with time been outrivaled by the today common and economically feasible horizontal axis wind turbines (HAWTs). However, VAWTs have several advantages such as the possibility to put the drive train at ground level, lower noise emissions and better scaling behavior which still make them interesting for research. The work within this thesis is made in collaboration between the Department of Construction and Energy Engineering at Halmstad University and the Division for Electricity at Uppsala University. A 200 kW VAWT owned by the latter and situated close to Falkenberg in the southwest of Sweden has been the main subject of the research even if most learnings has been generalized to fit a typical vertical turbine. This particular turbine has a wooden tower which is semi-guy-wired, i.e. the tower is both firmly attached to the ground and supported by guy-wires. This thesis has two main topics both regarding VAWTs: eigenfrequency of the tower and the noise generated from the turbine. The eigenfrequency of a semi-guy-wired tower is studied and an analytical expression describing this is produced and verified by experiments and simulations. The eigenfrequency of the wire itself and how it is affected by wind load are also studied. The noise characteristics of VAWTs have been investigated, both theoretically and by noise measurement campaigns. Both noise emission and frequency distribution of VAWTs has been studied. The work has resulted in analytical expressions for tower and wire eigenfrequency of a semi-guy-wired tower as well as recommendations for designing future towers for VAWTs. The noise emission of VAWTs has been studied and proven low compared to HAWTs. The noise frequency distribution of the 200 kW VAWT differs significantly from that of a similar size HAWTs with for example lower levels for frequencies below 3000 Hz.
|
2 |
Vertical Axis Wind Turbines : Tower Dynamics and NoiseMöllerström, Erik January 2015 (has links)
Vertical axis wind turbines (VAWTs) have with time been outrivaled by the today common and economically feasible horizontal axis wind turbines (HAWTs). However, VAWTs have several advantages such as the possibility to put the drive train at ground level, lower noise emissions and better scaling behavior which still make them interesting for research. The work within this thesis is made in collaboration between the Department of Construction and Energy Engineering at Halmstad University and the Division for Electricity at Uppsala University. A 200 kW VAWT owned by the latter and situated close to Falkenberg in the southwest of Sweden has been the main subject of the research even if most learnings has been generalized to fit a typical vertical turbine. This particular turbine has a wooden tower which is semi-guy-wired, i.e. the tower is both firmly attached to the ground and supported by guy-wires. This thesis has two main topics both regarding VAWTs: eigenfrequency of the tower and the noise generated from the turbine. The eigenfrequency of a semi-guy-wired tower is studied and an analytical expression describing this is produced and verified by experiments and simulations. The eigenfrequency of the wire itself and how it is affected by wind load are also studied. The noise characteristics of VAWTs have been investigated, both theoretically and by noise measurement campaigns. Both noise emission and frequency distribution of VAWTs has been studied. The work has resulted in analytical expressions for tower and wire eigenfrequency of a semi-guy-wired tower as well as recommendations for designing future towers for VAWTs. The noise emission of VAWTs has been studied and proven low compared to HAWTs. The noise frequency distribution of the 200 kW VAWT differs significantly from that of a similar size HAWTs with for example lower levels for frequencies below 3000 Hz.
|
3 |
Grid Connection of Permanent Magnet Generator Based Renewable Energy SystemsApelfröjd, Senad January 2016 (has links)
Renewable energy is harnessed from continuously replenishing natural processes. Some commonly known are sunlight, water, wind, tides, geothermal heat and various forms of biomass. The focus on renewable energy has over the past few decades intensified greatly. This thesis contributes to the research on developing renewable energy technologies, within the wind power, wave power and marine current power projects at the division of Electricity, Uppsala University. In this thesis grid connection of permanent magnet generator based renewable energy sources is evaluated. A tap transformer based grid connection system has been constructed and experimentally evaluated for a vertical axis wind turbine. Full range variable speed operation of the turbine is enabled by using the different step-up ratios of a tap transformer. This removes the need for a DC/DC step or an active rectifier on the generator side of the full frequency converter and thereby reduces system complexity. Experiments and simulations of the system for variable speed operation are done and efficiency and harmonic content are evaluated. The work presented in the thesis has also contributed to the design, construction and evaluation of a full-scale offshore marine substation for wave power intended to grid connect a farm of wave energy converters. The function of the marine substation has been experimentally tested and the substation is ready for deployment. Results from the system verification are presented. Special focus is on the transformer losses and transformer in-rush currents. A control and grid connection system for a vertical axis marine current energy converter has been designed and constructed. The grid connection is done with a back-to-back 2L-3L system with a three level cascaded H-bridge converter grid side. The system has been tested in the laboratory and is ready to be installed at the experimental site. Results from the laboratory testing of the system are presented. / Wind Power / Wave Power / Marine Currnet Power
|
4 |
Aerodynamics of Vertical Axis Wind Turbines : Development of Simulation Tools and ExperimentsDyachuk, Eduard January 2015 (has links)
This thesis combines measurements with the development of simulation tools for vertical axis wind turbines (VAWT). Numerical models of aerodynamic blade forces are developed and validated against experiments. The studies were made on VAWTs which were operated at open sites. Significant progress within the modeling of aerodynamics of VAWTs has been achieved by the development of new simulation tools and by conducting experimental studies. An existing dynamic stall model was investigated and further modified for the conditions of the VAWT operation. This model was coupled with a streamtube model and assessed against blade force measurements from a VAWT with curved blades, operated by Sandia National Laboratories. The comparison has shown that the accuracy of the streamtube model has been improved compared to its previous versions. The dynamic stall model was further modified by coupling it with a free vortex model. The new model has become less dependent on empirical constants and has shown an improved accuracy. Unique blade force measurements on a 12 kW VAWT were conducted. The turbine was operated north of Uppsala. Load cells were used to measure the forces on the turbine. A comprehensive analysis of the measurement accuracy has been performed and the major error sources have been identified. The measured aerodynamic normal force has been presented and analyzed for a wide range of operational conditions including dynamic stall, nominal operation and the region of high flow expansion. The improved vortex model has been validated against the data from the new measurements. The model agrees quite well with the experiments for the regions of nominal operation and high flow expansion. Although it does not reproduce all measurements in great detail, it is suggested that the presented vortex model can be used for preliminary estimations of blade forces due to its high computational speed and reasonable accuracy.
|
5 |
Vertical Axis Wind Turbines : Electrical System and Experimental ResultsKjellin, Jon January 2012 (has links)
The wind power research at the division of Electricity at Uppsala University is aimed towards increased understanding of vertical axis wind turbines. The considered type of wind turbine is an H-rotor with a directly driven synchronous generator operating at variable speed. The experimental work presented in this thesis comprises investigation of three vertical axis wind turbines of different design and size. The electrical, control and measurement systems for the first 12 kW wind turbine have been designed and implemented. The second was a 10 kW wind turbine adapted to a telecom application. Both the 12 kW and the 10 kW were operated against dump loads. The third turbine was a 200 kW grid-connected wind turbine, where control and measurement systems have been implemented. Experimental results have shown that an all-electric control, substituting mechanical systems such as blade-pitch, is possible for this type of turbine. By controlling the rectified generator voltage, the rotational speed of the turbine is also controlled. An electrical start-up system has been built and verified. The power coefficient has been measured and the stall behaviour of this type of turbine has been examined. An optimum tip speed ratio control has been implemented and tested, with promising results. Use of the turbine to estimate the wind speed has been demonstrated. This has been used to get a faster regulation of the turbine compared to if an anemometer had been used.
|
6 |
Noise, eigenfrequencies and turbulence behavior of a 200 kW H-rotor vertical axis wind turbineMöllerström, Erik January 2017 (has links)
Vertical-axis wind turbines (VAWTs) have with time been outrivaled by the today more common and economically feasible horizontal-axis wind turbines (HAWTs). However, VAWTs have several advantages which still make them interesting, for example, the VAWTs can have the drive train at ground level and it has been argued that they have lower noise emission. Other proposed advantages are suitability for both up-scaling and floating offshore platforms. The work within this thesis is made in collaboration between Halmstad University and Uppsala University. A 200-kW semi-guy-wired VAWT H-rotor, owned by Uppsala University but situated in Falkenberg close to Halmstad, has been the main subject of the research although most results can be generalized to suit a typical H-rotor. This thesis has three main topics regarding VAWTs: (1) how the wind energy extraction is influenced by turbulence, (2) aerodynamical noise generation and (3) eigenfrequencies of the semi-guy-wired tower. The influence from turbulence on the wind energy extraction is studied by evaluating logged operational data and examining how the power curve and the tip-speed ratio for maximum Cp is impacted by turbulence. The work has showed that the T1-turbine has a good ability to extract wind energy at turbulent conditions, indicating an advantage in energy extraction at turbulent sites for VAWTs compared to HAWTs.The noise characteristics are studied experimentally, and models of the two most likely aerodynamic noise mechanisms are applied. Here, inflow-turbulence noise is deemed as the prevailing noise source rather than turbulent-boundary-layer trailing-edge noise (TBL-TE) which is the most important noise mechanism for HAWTs. The overall noise emission has also been measured and proven low compared to similar sized HAWTs. The eigenfrequencies of a semi-guy-wired tower are also studied. Analytical expressions describing the first-mode eigenfrequency of both tower and guy wire has been derived and verified by experiments and simulations.
|
Page generated in 0.0673 seconds