• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vertical Axis Wind Turbines : Tower Dynamics and Noise

Möllerström, Erik January 2015 (has links)
Vertical axis wind turbines (VAWTs) have with time been outrivaled by the today common and economically feasible horizontal axis wind turbines (HAWTs). However, VAWTs have several advantages such as the possibility to put the drive train at ground level, lower noise emissions and better scaling behavior which still make them interesting for research. The work within this thesis is made in collaboration between the Department of Construction and Energy Engineering at Halmstad University and the Division for Electricity at Uppsala University. A 200 kW VAWT owned by the latter and situated close to Falkenberg in the southwest of Sweden has been the main subject of the research even if most learnings has been generalized to fit a typical vertical turbine. This particular turbine has a wooden tower which is semi-guy-wired, i.e. the tower is both firmly attached to the ground and supported by guy-wires. This thesis has two main topics both regarding VAWTs: eigenfrequency of the tower and the noise generated from the turbine. The eigenfrequency of a semi-guy-wired tower is studied and an analytical expression describing this is produced and verified by experiments and simulations. The eigenfrequency of the wire itself and how it is affected by wind load are also studied.  The noise characteristics of VAWTs have been investigated, both theoretically and by noise measurement campaigns. Both noise emission and frequency distribution of VAWTs has been studied. The work has resulted in analytical expressions for tower and wire eigenfrequency of a semi-guy-wired tower as well as recommendations for designing future towers for VAWTs. The noise emission of VAWTs has been studied and proven low compared to HAWTs. The noise frequency distribution of the 200 kW VAWT differs significantly from that of a similar size HAWTs with for example lower levels for frequencies below 3000 Hz.
2

Vertical Axis Wind Turbines : Tower Dynamics and Noise

Möllerström, Erik January 2015 (has links)
Vertical axis wind turbines (VAWTs) have with time been outrivaled by the today common and economically feasible horizontal axis wind turbines (HAWTs). However, VAWTs have several advantages such as the possibility to put the drive train at ground level, lower noise emissions and better scaling behavior which still make them interesting for research. The work within this thesis is made in collaboration between the Department of Construction and Energy Engineering at Halmstad University and the Division for Electricity at Uppsala University. A 200 kW VAWT owned by the latter and situated close to Falkenberg in the southwest of Sweden has been the main subject of the research even if most learnings has been generalized to fit a typical vertical turbine. This particular turbine has a wooden tower which is semi-guy-wired, i.e. the tower is both firmly attached to the ground and supported by guy-wires. This thesis has two main topics both regarding VAWTs: eigenfrequency of the tower and the noise generated from the turbine. The eigenfrequency of a semi-guy-wired tower is studied and an analytical expression describing this is produced and verified by experiments and simulations. The eigenfrequency of the wire itself and how it is affected by wind load are also studied.  The noise characteristics of VAWTs have been investigated, both theoretically and by noise measurement campaigns. Both noise emission and frequency distribution of VAWTs has been studied. The work has resulted in analytical expressions for tower and wire eigenfrequency of a semi-guy-wired tower as well as recommendations for designing future towers for VAWTs. The noise emission of VAWTs has been studied and proven low compared to HAWTs. The noise frequency distribution of the 200 kW VAWT differs significantly from that of a similar size HAWTs with for example lower levels for frequencies below 3000 Hz.
3

Noise, eigenfrequencies and turbulence behavior of a 200 kW H-rotor vertical axis wind turbine

Möllerström, Erik January 2017 (has links)
Vertical-axis wind turbines (VAWTs) have with time been outrivaled by the today more common and economically feasible horizontal-axis wind turbines (HAWTs). However, VAWTs have several advantages which still make them interesting, for example, the VAWTs can have the drive train at ground level and it has been argued that they have lower noise emission. Other proposed advantages are suitability for both up-scaling and floating offshore platforms. The work within this thesis is made in collaboration between Halmstad University and Uppsala University. A 200-kW semi-guy-wired VAWT H-rotor, owned by Uppsala University but situated in Falkenberg close to Halmstad, has been the main subject of the research although most results can be generalized to suit a typical H-rotor. This thesis has three main topics regarding VAWTs: (1) how the wind energy extraction is influenced by turbulence, (2) aerodynamical noise generation and (3) eigenfrequencies of the semi-guy-wired tower. The influence from turbulence on the wind energy extraction is studied by evaluating logged operational data and examining how the power curve and the tip-speed ratio for maximum Cp is impacted by turbulence. The work has showed that the T1-turbine has a good ability to extract wind energy at turbulent conditions, indicating an advantage in energy extraction at turbulent sites for VAWTs compared to HAWTs.The noise characteristics are studied experimentally, and models of the two most likely aerodynamic noise mechanisms are applied. Here, inflow-turbulence noise is deemed as the prevailing noise source rather than turbulent-boundary-layer trailing-edge noise (TBL-TE) which is the most important noise mechanism for HAWTs. The overall noise emission has also been measured and proven low compared to similar sized HAWTs. The eigenfrequencies of a semi-guy-wired tower are also studied. Analytical expressions describing the first-mode eigenfrequency of both tower and guy wire has been derived and verified by experiments and simulations.

Page generated in 0.0472 seconds