• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transformation Induced Fatigue of Ni-Rich NiTi Shape Memory Alloy Actuators

Schick, Justin Ryan 2009 December 1900 (has links)
In this work the transformation induced fatigue of Ni-rich NiTi shape memory alloys (SMAs) was investigated. The aerospace industry is currently considering implementing SMA actuators into new applications. However, before any new applications can be put into production they must first be certified by the FAA. Part of this certification process includes the actuator fatigue life. In this study, as-received and polished at dogbone SMA specimens underwent transformation induced fatigue testing at constant loading. The constant applied loading ranged from 100 MPa to 200 MPa. Specimens were thermally cycled through complete actuation (above Af to below Mf ) by Joule heating and environmental cooling. There were three cooling environments studied: liquid, gaseous nitrogen and vortex cooled air. It was shown that polished specimens had fatigue lives that were two to four times longer than those of as-received specimens. Test environment was also found to have an effect on fatigue life. Liquid cooling was observed to be corrosive, while the gaseous nitrogen and vortex air cooling were observed to be non-corrosive. The two non-corrosive cooling environments performed similarly with specimen fatigue lives that were twice that of specimens fatigue tested in the corrosive cooling environment. Transformation induced fatigue testing of polished specimens in a non-corrosive environment at 200 MPa had an average fatigue life of 14400 actuation cycles; at 150 MPa the average fatigue life was 20800 cycles and at 100 MPa it was 111000 cycles. For all specimens constant actuation from the beginning of testing until failure was observed, without the need for training. Finally, a microstructural study showed that the Ni3Ti precipitates in the material were one of the causes of crack initiation and propagation in the actuators.

Page generated in 0.0484 seconds