• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analytical and Experimental Verification of Bistable Composite Laminates for Aerospace Applications

Booth, Maxwell J 01 January 2024 (has links) (PDF)
Composite laminate structures offer promising aerospace applications owing to their multi-functional capabilities. These composites exhibit the unique ability to transition between stable geometries, passing through an intermediate, predicted unstable geometry. Actuation is achieved through the application of external loading conditions, encompassing both mechanical and thermal stimuli, with a particular emphasis on the latter. The nonlinear response induced by such transitions experimentally motivates this research due to the minimal amount of data on the transition section between geometries. Application of these composites under loading conditions proves interesting for a thermal management application with additional thermal loading present. This use would require the composite laminate to withstand various loads, as well as to satisfy varying geometry constraints. Boundary conditions play a pivotal role in governing the composite's response, with certain configurations proving ideal for maximizing deformation. Understanding the dynamic response due to these various conditions allows for the implementation of the bistable composites in our thermal management case. Investigation of the total response and the speed of actuation during the loading process highlights the composite's viability. Through the repeated testing, both analytically and experimentally, the composite laminates have proven that they are viable for the thermal management application. Experimental research into the application, through the addition of the flat plate installed directly into the thermal management case, or the addition of the various other geometries is of much interest as this study continues to move forward.
2

Transformation Induced Fatigue of Ni-Rich NiTi Shape Memory Alloy Actuators

Schick, Justin Ryan 2009 December 1900 (has links)
In this work the transformation induced fatigue of Ni-rich NiTi shape memory alloys (SMAs) was investigated. The aerospace industry is currently considering implementing SMA actuators into new applications. However, before any new applications can be put into production they must first be certified by the FAA. Part of this certification process includes the actuator fatigue life. In this study, as-received and polished at dogbone SMA specimens underwent transformation induced fatigue testing at constant loading. The constant applied loading ranged from 100 MPa to 200 MPa. Specimens were thermally cycled through complete actuation (above Af to below Mf ) by Joule heating and environmental cooling. There were three cooling environments studied: liquid, gaseous nitrogen and vortex cooled air. It was shown that polished specimens had fatigue lives that were two to four times longer than those of as-received specimens. Test environment was also found to have an effect on fatigue life. Liquid cooling was observed to be corrosive, while the gaseous nitrogen and vortex air cooling were observed to be non-corrosive. The two non-corrosive cooling environments performed similarly with specimen fatigue lives that were twice that of specimens fatigue tested in the corrosive cooling environment. Transformation induced fatigue testing of polished specimens in a non-corrosive environment at 200 MPa had an average fatigue life of 14400 actuation cycles; at 150 MPa the average fatigue life was 20800 cycles and at 100 MPa it was 111000 cycles. For all specimens constant actuation from the beginning of testing until failure was observed, without the need for training. Finally, a microstructural study showed that the Ni3Ti precipitates in the material were one of the causes of crack initiation and propagation in the actuators.
3

Fully Compliant Tensural Bistable Mechanisms (FTBM) with On-Chip Thermal Actuation

Wilcox, Daniel L. 27 July 2004 (has links) (PDF)
The Fully compliant Tensural Bistable Mechanism (FTBM) class is introduced. The class consists of fully compliant linear bistable mechanisms that achieve much of their displacement and bistable behavior through tension loading of compliant segments. Multiple topologies of designs arising from the FTBM class were designed using a finite element analysis (FEA) model with optimization. In a coupled design approach, thermal actuators were optimized to the force and displacement requirements of the bistable mech-anisms, and selected FTBM devices were combined in switching systems with the result-ing Thermomechanical In-plane Microactuators (TIMs) and Amplified Thermomechanical In-plane Microactuators (ATIMs). Successful on-chip actuation was demonstrated. The bistable mechanisms and actuators in this work were fabricated in the MUMPs and SUMMiT V surface micromachining MEMS fabrication technologies. The Stacked Amplified Thermomechanical In-plane Microactuator (StATIM) is also introduced. The StATIM is a compact linear output actuator based on the ATIM that is capable of large displacements relative to the size of the actuator. The StATIMs presented in this thesis were fabricated in the SUMMiT V technology.
4

Analysis and Design of Surface Micromachined Micromanipulators for Out-of-Plane Micropositioning

Jensen, Kimberly A. 23 July 2003 (has links) (PDF)
This thesis introduces two ortho-planar MEMS devices that can be used to position microcomponents: the XZ Micropositioning Mechanism and the XYZ Micromanipulator. The displacement and force relationships are presented. The devices were fabricated using surface micromachining processes and the resulting mechanisms were tested. A compliant XYZ Micromanipulator was also designed to reduce backlash and binding. In addition, several other MEMS positioners were fabricated and tested: the Micropositioning Platform Mechanism (MPM), the Ortho-planar Twisting Micromechanism (OTM), and the Ortho-planar Spring Micromechanism (OSM).

Page generated in 0.1024 seconds