• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploration d'une nouvelle méthode d'estimation dans le processus de coalescence avec recombinaison

Massé, Hugues January 2008 (has links) (PDF)
L'estimation de paramètres génétiques est un problème important dans le domaine de la génétique mathématique et statistique. Il existe plusieurs méthodes s'attaquant à ce problème. Certaines d'entre elles utilisent la méthode du maximum de vraisemblance. Celle-ci peut être calculée à l'aide des équations exactes de Griffiths-Tavaré, équations de récurrence provenant du processus de coalescence. Il s'agit alors de considérer plusieurs histoires possibles qui relient les données de l'échantillon initial de séquences d'ADN à un ancêtre commun. Habituellement, certaines des histoires possibles sont simulées, en conjonction avec l'application des méthodes Monte-Carlo. Larribe et al. (2002) utilisent cette méthode (voir chapitre IV). Nous explorons une nouvelle approche permettant d'utiliser les équations de Griffiths-Tavaré de façon différente pour obtenir une estimation quasi exacte de la vraisemblance sans avoir recours aux simulations. Pour que le temps de calcul nécessaire à l'application de la méthode demeure raisonnable, nous devons faire deux compromis majeurs. La première concession consiste à limiter le nombre de recombinaisons permises dans les histoires. La seconde concession consiste à séparer les données en plusieurs parties appelées fenêtres. Nous obtenons ainsi plusieurs vraisemblances marginales que nous mettons ensuite en commun en appliquant le principe de vraisemblance composite. À l'aide d'un programme écrit en C++, nous appliquons notre méthode dans le cadre d'un problème de cartographie génétique fine où nous voulons estimer la position d'une mutation causant une maladie génétique simple. Notre méthode donne des résultats intéressants. Pour de très petits ensembles de données, nous montrons qu'il est possible de permettre un assez grand nombre de recombinaisons pour qu'il y ait convergence dans la courbe de vraisemblance obtenue. Aussi, il est également possible d'obtenir des courbes dont la forme et l'estimation du maximum de vraisemblance sont similaires à celles obtenues avec la méthode de Larribe et al. Cependant, notre méthode n'est pas encore applicable dans son état actuel parce qu'elle est encore trop exigeante en termes de temps de calcul. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Équations exactes de Griffiths-Tavaré, Paramètres génétiques, Processus de coalescence, Vraisemblance composite.
2

Inférence pour des processus affines basée sur des observations à temps discret

Lolo, Maryam January 2009 (has links) (PDF)
Dans ce mémoire, on étudie la distribution empirique des estimateurs de vraisemblance maximale pour des processus affines, basés sur des observations à temps discret. On examine d'abord le cas où le processus est directement observable. Ensuite, on regarde ce qu'il advient lorsque seule une transformation affine du processus est observable, une situation typique dans les applications financières. Deux approches sont alors considérées: maximisation de la vraisemblance exacte ou maximisation d'une quasi-vraisemblance obtenue du filtre de Kalman. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Estimation de vraisemblance maximale, Processus affines, Obligation à l'escompte, Quasi-vraisemblance, Filtre de Kalman.
3

Generalized empirical likelihood for a continuum of moment conditions

Chaussé, Pierre 02 1900 (has links) (PDF)
Dans cette thèse, je propose une généralisation de la méthode de vraisemblance empirique généralisée (GEL) pour permettre la possibilité d'avoir soit un très grand nombre de conditions de moment ou des conditions définies sur un continuum. Cette généralisation peut permettre par exemple d'estimer des modèles de régression avec régresseurs endogènes pour lesquels le nombre d'instruments est très élevé ou encore que la relation entre les régresseurs et les variables exogènes est inconnue. Il est également possible de baser notre estimation sur des conditions de moment construites à partir de fonctions caractéristiques. Il devient alors possible d'estimer les coefficients d'une distribution quelconque ou d'un processus stochastique lorsque sa fonction de vraisemblance n'admet pas de forme analytique. C'est le cas entre autres de la distribution stable et de la plupart des processus de diffusion exprimés en temps continu. Cette généralisation a été proposée par (Carrasco and Florens, 2000) pour la méthode des moments généralisés (CGMM). Sur la base des résultats de (Newey and Smith, 2004), qui démontrent la supériorité asymptotique de GEL sur GMM, la méthode que je propose représente donc une contribution substantielle. La thèse est divisée en trois chapitres. Le premier présente en détails la méthode de vraisemblance empirique généralisée pour un continuum de moments (CGEL), démontre la convergence en probabilité et en distribution de ses estimateurs et décrit la procédure à suivre en pratique pour estimer les coefficients du modèle à l'aide d'une approche matricielle relativement simple. De plus, je démontre l'équivalence asymptotique de CGEL et CGMM. CGEL est en fait un algorithme non-linéaire régularisé à la Tikhonov, qui permet d'obtenir l'estimateur GEL dans le cas où le nombre de conditions est très grand. Dans cette méthode, un paramètre de régularisation, αn, permet de résoudre le problème d'optimisation mal posé qui en résulte et d'obtenir une solution unique et stable. Le paramètre αn doit converger vers zéro lentement lorsque la taille d'échantillon augmente pour que l'estimateur soit convergent et que la solution demeure stable. Les détails du rythme de convergence de αn sont également présentés dans ce chapitre. Finalement, le chapitre présente la façon de tester les conditions de moments en généralisant les trois tests de spécifications existants pour GEL. Dans le chapitre 2, je présente plusieurs applications numériques. L'objectif est de voir les possibilités de CGEL, d'analyser les propriétés et ses estimateurs en échantillons finis, en comparaison avec ceux de CGMM, et de comprendre l'impact du paramètre αn sur le biais et la variance des estimateurs. Les applications analysées sont : l'estimation d'un modèle linéaire avec endogénéité de forme inconnue, l'estimation des paramètres d'une distribution stable et l'estimation des coefficients d'un processus de diffusion. De façon générale les résultats démontrent que la dominance de CGEL sur CGMM dépend de la valeur de αn. Cela démontre en fait la nécessité de développer une méthode de sélection de αn. Finalement, une méthode de sélection du paramètre an est proposée dans le dernier chapitre. Dans un premier temps, je démontre qu'une méthode de bootstrap simple permet difficilement de faire un choix optimal car elle produit une relation très volatile entre αn et l'erreur quadratique moyen (MSE) du coefficient. Ensuite, je présente une approximation de second ordre du MSE de CGEL par un développement stochastique des conditions de premier ordre comme fait par (Donald and Newey, 2001) pour les double moindres carrés, (Donald, Imbens and Newey, 2010) pour GEL ainsi que (Carrasco, 2010) et (Carrasco and Kotchoni, 2010) pour CGMM. Cette approche permet d'obtenir une relation lisse entre αn et le MSE et donc d'utiliser un algorithme d'optimisation pour obtenir le paramètre optimal. Les résultats semblent être conformes aux résultants précédents selon lesquels la méthode de vraisemblance empirique domine les autres méthodes faisant partie de la famille CGEL. Ils semblent également suggérer que αn, pour le cas linéaire considéré, devrait être choisi aussi petit que possible car c'est de cette façon que le MSE est minimisé. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Vraisemblance Généralisée, Continuum de moments, Méthode des moments généralisés, Économétrie, Variables Instrumentales

Page generated in 0.1057 seconds