• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

USING COMPLEXITY, COUPLING, AND COHESION METRICS AS EARLY INDICATORS OF VULNERABILITIES

Chowdhury, Istehad 28 September 2009 (has links)
Software security failures are common and the problem is growing. A vulnerability is a weakness in the software that, when exploited, causes a security failure. It is difficult to detect vulnerabilities until they manifest themselves as security failures in the operational stage of the software, because security concerns are often not addressed or known sufficiently early during the Software Development Life Cycle (SDLC). Complexity, coupling, and cohesion (CCC) related software metrics can be measured during the early phases of software development such as design or coding. Although these metrics have been successfully employed to indicate software faults in general, the relationships between CCC metrics and vulnerabilities have not been extensively investigated yet. If empirical relationships can be discovered between CCC metrics and vulnerabilities, these metrics could aid software developers to take proactive actions against potential vulnerabilities in software. In this thesis, we investigate whether CCC metrics can be utilized as early indicators of software vulnerabilities. We conduct an extensive case study on several releases of Mozilla Firefox to provide empirical evidence on how vulnerabilities are related to complexity, coupling, and cohesion. We mine the vulnerability databases, bug databases, and version archives of Mozilla Firefox to map vulnerabilities to software entities. It is found that some of the CCC metrics are correlated to vulnerabilities at a statistically significant level. Since different metrics are available at different development phases, we further examine the correlations to determine which level (design or code) of CCC metrics are better indicators of vulnerabilities. We also observe that the correlation patterns are stable across multiple releases. These observations imply that the metrics can be dependably used as early indicators of vulnerabilities in software. We then present a framework to automatically predict vulnerabilities based on CCC metrics. To build vulnerability predictors, we consider four alternative data mining and statistical techniques – C4.5 Decision Tree, Random Forests, Logistic Regression, and Naïve-Bayes – and compare their prediction performances. We are able to predict majority of the vulnerability-prone files in Mozilla Firefox, with tolerable false positive rates. Moreover, the predictors built from the past releases can reliably predict the likelihood of having vulnerabilities in future releases. The experimental results indicate that structural information from the non-security realm such as complexity, coupling, and cohesion are useful in vulnerability prediction. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2009-09-24 17:31:36.581
2

Predicting vulnerability for requirements: A data-driven approach

Imtiaz, Sayem Mohammad 09 August 2019 (has links)
Being software security one of the primary concerns in the software engineering community, researchers are coming up with many preemptive approaches which are primarily designed to detect vulnerabilities in the post-implementation stage of the software development life-cycle (SDLC). While they have been shown to be effective in detecting vulnerabilities, the consequences are often expensive. Accommodating changes after detecting a bug or vulnerability in late stages of the SDLC is costly. On that account, in this thesis, we propose a novel framework to provide an additional measure of predicting vulnerabilities at earlier stages of the SDLC. To that end, we leverage state-of-the-art machine learning classification algorithms to predict vulnerabilities for new requirements. We also present a case study on a large open-source-software (OSS) system, Firefox, evaluating the effectiveness of the extended prediction module. The results demonstrate that the framework could be a viable augmentation to the traditional vulnerabilityighting tools.

Page generated in 0.0948 seconds