• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermische Charakterisierung selbstevakuierender Kryodämmmaterialien durch Ausfrieren von Kohlenstoffdioxid als Füllgas / Thermal characterisation of self evacuating cryogenic thermalinsulations by deposition of CO2 as filling gas

Geisler, Matthias January 2010 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die thermische Charakterisierung des Einflusses von ausfrierenden Füllgasen auf die Wärmeleitfähigkeit von Wärmedämmstoffen für kryogene Anwendungen am Beispiel von Kohlenstoffdioxid. Im Allgemeinen wird mit dem Wärmedämmmaterial der Wärmeverlust eines Gegenstandes herabgesetzt, der eine Temperaturdifferenz im Vergleich zur Umgebung aufweist. Um die Gesamtwärmeleitfähigkeit eines Dämmstoffes bei kryogenen Temperaturen, d.h. < 200 K, zu minimieren, wird das meist poröse Dämmmaterial in der Regel hinreichend evakuiert, um die Gaswärmeleitfähigkeit zu unterdrücken. Zur Evakuierung gibt es mehrere Möglichkeiten. Meist wird der Gasdruck durch Abpumpen der Füllgase abgesenkt. In dieser Arbeit wird jedoch das Evakuieren durch „Ausfrieren“ des Füllgases bei tiefen Temperaturen (Desublimations-Evakuierung) realisiert und untersucht. Die Problemstellung der vorliegenden Arbeit bestand zum einen in der experimentellen Untersuchung des Wärmetransportes unter Berücksichtigung desublimierter Gase in porösen Dämmmaterialien mit verschiedensten Bulk-Strukturen und zum anderen in deren theoretischen Beschreibung. Aus technischen Gründen wurde mit LN2 als Kryogen und mit CO2 als Füllgas gearbeitet. Die erreichbaren Temperaturen erlauben die Verwendung von CO2 als Füllgas, da hier der Restgasdruck ausreichend niedrig ist, um bei den untersuchten Proben die Gaswärmeleitfähigkeit zu unterdrücken. Im Rahmen dieser Arbeit wurde eine neue Messmethode zur Charakterisierung des Einflusses von desublimierten Füllgasen auf die Festkörperwärmeleitfähigkeit entwickelt, da die genaue Kenntnis der effektiven Wärmeleitfähigkeit für viele technische Anwendungen unerlässlich ist. Hierzu wurde einer bestehenden Platten-Apparatur zur Wärmeleitfähigkeitsbestimmung ein spezieller Probenbehälter implementiert, welcher die Untersuchung verschiedenster Probenmaterialien erlaubt. Dieser Probenbehälter ermöglicht die Injektion eines Gases in einen porösen Prüfkörper, welchem eine Temperatur von 77 K auf der kalten Seite und 293 K auf der warmen Seite aufgeprägt wurde. Dieses weiterentwickelte stationäre Messverfahren erlaubt neben der Bestimmung der Gesamtwärmeleitfähigkeit der gesamten Probe durch die Einbringung zusätzlicher Temperatursensoren in verschieden Positionen des porösen Materials auch die Bestimmung der effektiven Gesamtwärmeleitfähigkeit einzelner Schichten. Um ein breites Spektrum an porösen Materialien in dieser Arbeit abzudecken und die im Rahmen dieser Arbeit entwickelten Theorien zu validieren, wurden verschiedene Materialklassen untersucht. Neben einem Melaminharz-Schaum mit Zellgrößen um 100 µm und einem Polyimid-Vlies mit einem effektiven Faserdurchmesser um 7 µm wurden zwei Pulverproben untersucht, zum einen eine Schüttung aus Vollglaskugeln mit Partikeldurchmessern zwischen 1 und 10 µm und eine Schüttung aus getrübter Kieselsäure mit wesentlich kleineren Primär-Partikeln (<10 nm). Die erarbeiteten theoretischen Modelle zur Berechnung der Festkörperwärmeleitfähigkeit lassen erwarten, dass die Empfindlichkeit der Festkörperwärmeleitfähigkeit gegenüber abgeschiedenen Gasen je nach Materialklasse unterschiedlich groß ausfällt. Als Hauptmerkmal wurde das Vorhandensein von Punktkontakten zwischen den einzelnen Partikeln bzw. Elementen des porösen Materials identifiziert, sowie die spezifische Wechselwirkung (CO2-phil/phob). Die Punktkontakte sind mit ihren großen thermischen Widerständen maßgeblich für die Wärmeleitfähigkeit der Festkörperstruktur verantwortlich. Durch Ausfrieren der Füllgase an diesen Punktkontakten werden die thermischen Kontaktwiderstände stark herabgesetzt, so dass ein Anstieg der Festkörperwärmeleitfähigkeit erfolgt. Dieser fällt abhängig vom jeweiligen Material unterschiedlich hoch aus. Die bestehenden Festkörperwärmeleitfähigkeitsmodelle wurden um den Einfluß von desublimierten Füllgasen erweitert, um diese mit den Wärmeleitfähigkeitsmessungen zu vergleichen und eine Aussage über den Abscheidemechanismus treffen zu können. Das erweiterte Festkörperwärmeleitfähigkeitsmodell für die Vollglaskugel-Schüttung hat z.B. eine sehr starke Abhängigkeit von der geometrischen Verteilung des abgeschiedenen Gases gezeigt. Eine Konzentration der im Mittel abgeschiedenen Füllgase am Kontaktpunkt zwischen zwei Partikeln einer einfachen kubischen Anordnung erhöht die Wärmeleitfähigkeit um mehr als 800%, wohingegen die homogene Abscheidung auf der Oberfläche nur zu einer moderaten Erhöhung um ca. 30% führt. Die experimentellen Versuche konnten die theoretisch erwarteten großen Anstiege der Festkörperwärmeleitfähigkeit für die Schüttungen mit einer großen Punktkontaktdichte bestätigen. Diesen folgt die Polyimid-Faser-Probe mit einer geringen Punktkontaktdichte. Der Melaminharz-Schaum hingegen besitzt keine Punktkontakte und ist CO2-phob. Erwartungsgemäß zeigt dieser eine sehr geringe Abhängigkeit in der Festkörperwärmeleitfähigkeit von der injizierten Gasmenge. Absolute Zahlenwerte der mittleren Gesamtwärmeleitfähigkeiten der untersuchten porösen Materialien lagen für die Randtemperaturen 77 K und 293 K für die Vollglaskugel-Schüttung bei ca. 12∙10^-3 W/(mK), für die getrübte Kieselsäure bei ca. 1.7∙10^-3 W/(mK), für die Polyimid-Fasern bei ca. 0.8∙10^-3 W/(mK) und für den Melaminharz-Schaum bei ca. 4.5∙10^-3 W/(mK). Im Rahmen der injizierten CO2-Menge wurden die mittleren Gesamtwärmeleitfähigkeiten bei der Vollglaskugel-Schüttung und der getrübten Kieselsäure um ca. 15% im Vergleich zum evakuierten Zustand (ohne desublimiertes Füllgas) erhöht. Die Polyimid-Fasern und der Melaminharz-Schaum wiesen eine Erhöhung um ca. 7% bzw. 2% auf. Die relative Vergrößerung der Gesamtwärmeleitfähigkeit im kältesten Viertel der Probe fiel prozentual wesentlich stärker aus: ca. 300% für die getrübte Kieselsäure, ca. 75% für die Vollglaskugel-Schüttung, ca. 40% für die Polyimid-Fasern und ca. 5% für den Melaninharz-Schaum. Die Korrelation der erarbeiteten Festkörperwärmeleitfähigkeitsmodelle mit den gemessenen Wärmeleitfähigkeiten bedurfte jedoch weiterer Eingangsparameter, um eine eindeutige Schlussfolgerung über den Anlagerungsmechanismus (Punktkontaktanlagerung oder homogene Oberflächenanlagerung oder eine Kombination aus beiden) treffen zu können. Die Bestimmung der zwingend benötigten absoluten CO2-Verteilung innerhalb der Probe wurde dazu exemplarisch mittels Neutronen-Radiographie an der Vollglaskugelprobe in einem speziellen Probenbehälter am Helmholtz-Zentrum Berlin (HZB) durchgeführt. Die so ermittelte CO2-Verteilung innerhalb der Vollglaskugelprobe war in sehr gutem Einklang mit den durchgeführten Monte-Carlo-Simulationen zum Desublimationsverhalten. Das erarbeitete Simulations-Programm beschreibt den molekularen Stofftransport innerhalb eines porösen Dämmmaterials mit ebenfalls 77 K auf der kalten Seite und 300 K auf der warmen Seite. Der Programm-Algorithmus berücksichtigt dabei die spezifischen Adsorptionsenergien, sowie die temperaturabhängige Frequenz mit der ein adsorbiertes Gasmolekül an der Oberfläche schwingt, welche umgekehrt proportional zur Haftzeit an einem Ort ist. Die Simulation liefert als Ergebnis die durchschnittliche Haftdauer eines Teilchens an einem Ort, welche wiederum proportional zur Verteilung vieler Gasmoleküle, in diesem Fall der injizierten und anschließend desublimierten Gasmenge, ist. Die Ergebnisse zeigen sehr deutlich die Abhängigkeit der durchschnittlichen Haftzeit von der Temperatur und der Adsorptionsenergie. Weitere Informationen zur Wechselwirkung der CO2-Moleküle mit den untersuchten Proben lieferten die Adsorptionsmessungen an den Proben mit CO2 als Adsorptiv bzw. Adsorbens nach den Methoden von Brunauer, Emmett und Teller (BET) und der Methode nach Dubinin-Radushkevich (DR). Durch Kombination bzw. Korrelation der verschiedenen Untersuchungsmethoden und den theoretischen Modellen konnte bestimmt werden, dass das CO2 fast ausschließlich als homogene Schicht auf der Oberfläche der Vollglaskugeln desublimiert, welche eine entsprechend geringe Temperatur aufweisen. Weiterhin stellte sich heraus, dass eine starke Konzentration an der kalten Seite stattfindet, die zur warmen Seite exponentiell abnimmt. Die Auswertung der Korrelation zeigt Tendenzen einer leicht bevorzugten Abscheidung am Kontaktpunkt bei weiteren injizierten CO2-Mengen in die bereits mit CO2 beladene Probe. Die Betrachtung und Diskussion der Messergebnisse und Festkörperwärmeleitfähigkeitsmodelle der Polyimid-Fasern und der getrübten Kieselsäure lässt auf ein ähnliches Verhalten bei Desublimation der Füllgase innerhalb des porösen Probenkörpers schließen. Die Empfindlichkeit des Wärmeleitfähigkeitsanstiegs gegenüber weiteren Mengen an desublimiertem CO2 nahm tendenziell zu. Eine Ausnahme stellte jedoch der Melaminharz-Schaum dar, welcher eine abnehmende Empfindlichkeit des Wärmeleitfähigkeitsanstiegs gegenüber weiteren Mengen an desublimiertem CO2 aufwies. Dafür verantwortlich sind das abstoßende Verhalten von CO2 gegenüber Melaminharz und die Festkörperstruktur des Schaums. / The subject of this work is the thermal characterization of the influence of condensed filling gases (carbon dioxide) on the thermal conductivity of thermal insulation materials for cryogenic applications. Thermal insulation materials are generally used to decrease the heat loss of objects with different temperatures to their surroundings. In order to minimize the total thermal conductivity of a thermal insulation material for cryogenic applications (temperatures below 200 K), the porous media are evacuated to suppress the gaseous thermal conductivity. There are several methods of achieving this. Usually, the gas pressure is lowered by way of vacuum pumps. In this work, however, evacuation is realized by cryo-condensation (condensing the filling gas at low enough temperatures). The objective of this work was to experimentally investigate the effect of deposited filling gases on the thermal transfer in porous media of varying material classes as well as theoretical characterization. Due to technical reasons, LN2 was used as the cryogen and CO2 as the filling gas. The attainable temperatures permit the use of CO2 as the filling gas because the residual gas pressure is low enough to suppress the gaseous thermal conductivity. A new method to thermally characterize the influence of frozen filling gases on the mean thermal conductivity was developed during the course of this work since being able to precisely determine the effective thermal conductivity is essential for many technical applications. A special sample holder was added to an existing guarded hot plate apparatus for measuring thermal conductivity, enabling diverse sample materials to be investigated. This sample holder allows the exact injection of gas into a porous insulation material kept at 77 K on the cold side and at 293 K on the warm side. This enhanced stationary measuring procedure enables the effective thermal conductivity of individual sample layers to be determined in addition to the total thermal conductivity over the entire sample. This is achieved by inserting additional temperature sensors into varyingly warm regions of the material. Different material classes were examined in order to cover a broad spectrum of thermal insulation materials and to validate the developed theories. Melamine resin foam with cell sizes around 100 µm and polyimide fibre fleece with an effective fibre diameter of around 7 µm were examined. A packed bed of solid glass spheres with particle diameters between 1 and 10 µm as well as a packed bed of IR-opacied silica with substantially smaller primary particles (<10 nm) were also investigated. The modified theoretical approaches for the computation of the thermal conductivity suggest that the sensitivity towards deposited gas depends upon the particular material class. The presence of contact points between individual particles of the insulation material was identified as the decisive factor. Contact points lead to a very large thermal resistance. These contact resistances are lowered by deposited filling gases, and a rise in the thermal conductivity can consequently be observed. The extent of this increase depends on the material used. Existing thermal conductivity models were modified to include the influence of deposited gases in order to compare them with the thermal conductivity measurements and therefore to draw conclusions about the mechanism of deposition. The modified thermal conductivity model for the packed bed of solid glass spheres was, for example, very dependent on the geometrical distribution of the deposited gas. A concentration of the deposited gases within a unit cell at the contact point leads to an over 800% increase of the solid thermal conductivity, whereas homogeneous deposition on the surface only leads to a moderate increase of around 30%. The experimental measurements confirmed the theoretical calculations with a greatly increased effective thermal conductivity for a packed bed with a high number of point contacts followed by the polyimide fiber sample with a smaller number of contact points. The melamine resin foam with a CO2-phobic surface is only slightly dependent on the injected gas as expected. The mean thermal conductivity at 77 K on the cold side and 293 K on the warm side was determined to be 12∙10^-3 W/(mK) for the solid glass spheres, around 1.7∙10^-3 W/(mK) for the opacified silica, around 0.8∙10^-3 W/(mK) for the polyimide fibres and around 4.5∙10^-3 W/(mK) for the melamine resin foam. Within the injected amount of CO2 the mean thermal conductivity of the solid glass spheres and the opacified silica was increased by around 15% compared to the evacuated state without CO2. The polyimide fibres and the melamine resin foam had increases of approx. 7% and 2%, respectively. The relative increase in the total effective thermal conductivity in the coldest quarter of each sample was much greater: around 300% for the opacified silica, around 75% for the solid glass spheres, approx. 40% for the polyimide fibres and around 5% for the melamine resin. Further initial parameters are required to correlate the enhanced thermal conductivity models with the thermal conductivity measurements, if a clear conclusion about the deposition mechanism (pure contact point deposition, homogeneous layer deposition or a combination) is to be drawn. The required CO2 mass distribution within the sample was accomplished by means of neutron radiography and a special sample holder at the Helmholtz-Zentrum Berlin (HZB). The determined CO2 distribution within the sample of the solid glass spheres was in very good agreement with Monte Carlo simulations performed in this work. The developed simulation routine describes the molecular material transfer within a porous insulation material likewise with a large temperature difference (77 K on the cold side and 300 K on the warm side). It considers the specific adsorption energies, as well as the temperature-dependent oscillating frequency of an adsorbed gas molecule at the surface which is reversely proportional to the sticking time at one place. The average duration of a particle at one place is proportional to the distribution of many gas molecules, e.g. the injected amount of gas. The results show the dependence of the average duration time on the temperature and the adsorption energy. Further information for the interaction of the CO2 molecules with the examined samples was supplied by adsorption measurements on the samples with CO2 as the adsorbent with regard to the method of Brunauer, Emmett and Teller (BET) and the method of Dubinin-Radushkevich (DR). By combining the different analytical and research methods it was determined that the CO2 (in the investigated quantities) deposits almost exclusively as a homogeneous layer on the surface of the solid glass spheres, if cold enough. In addition, it was determined that the deposited CO2 is largely concentrated at the cold side of the sample and decreases exponentially to the warm side. The correlation showed tendencies of a slightly favoured point contact deposition for additional amounts of injected CO2 into a sample already loaded with CO2. The discussion of the measurements and thermal conductivity models suggests a similar behaviour for deposited gases within the porous media of the polyimide fibres and the opacified silica. The sensitivity of the effective thermal conductivity towards further amounts of injected CO2 is accelerated. The only exception is represented by the melamine resin which has diminished sensitivity. The reason for this is the repellent behaviour of CO2 towards melamine resin and the structure of the foam.
2

Synthese und Charakterisierung Sol-Gel-basierter Kohlenstoff-Materialien für die Hochtemperatur-Wärmedämmung / Synthesis and Characterisation Sol-Gel-based Carbon-Materials for High Temperature Thermal Insulation

Wiener, Matthias January 2009 (has links) (PDF)
Gegenstand der vorliegenden Arbeit ist die Synthese, Charakterisierung und Optimierung von Kohlenstoff-Aerogelen (C-Aerogele) für den Einsatz als Hochtemperaturwärmedämmung (> 1000°C). C-Aerogele sind offenporöse monolithische Festkörper, die durch Pyrolyse von organischen Aerogelen entstehen. Die Synthese dieser organischen Vorstufen erfolgt über das Sol-Gel-Verfahren. Zur Charakterisierung der Morphologie wurde die innere Struktur der Aerogele mittels Raster- und Transmissionselektronenmikroskopie, Röntgendiffraktometrie (XRD), Raman-Spektroskopie, Stickstoffsorption und Röntgenkleinwinkelstreuung (SAXS) untersucht. Die thermischen Eigenschaften der Aerogele wurden mit Hilfe von Laser-Flash Messungen, dynamischer Differenzkalorimetrie (DSC), thermographischen und infrarot-optischen (IR) Messungen quantifiziert. Die innere Struktur von Aerogelen besteht aus einem dreidimensionalen Gerüst von Primärpartikeln, die während der Sol-Gel Synthese ohne jede Ordnung aneinander wachsen. Die zwischen den Partikeln befindlichen Hohlräume bilden die Poren. Die mittlere Partikel- und Porengröße eines Aerogels kann durch die Konzentration der Ausgangslösung und der Katalysatorkonzentration einerseits und durch die Synthesetemperatur und –dauer andererseits eingestellt werden. Der Bereich der mittleren Partikel- und Porengröße, der in dieser Arbeit synthetisierten Aerogele, erstreckt sich von einigen 10 Nanometern bis zu einigen Mikrometern. Die Dichten der Proben wurden im Bereich von 225 kg/m3 bis 635 kg/m3 variiert. Die Auswirkungen der Pyrolysetemperatur auf die Struktur und die thermischen Eigenschaften der C-Aerogele wurden anhand einer Probenserie erstmalig systematisch untersucht. Die Proben wurden dazu bei Temperaturen von 800°C bis 2500°C pyrolysiert bzw. temperaturbehandelt (geglüht). Um die einzelnen Beiträge zur Wärmeleitfähigkeit trennen und minimieren zu können, wurden die synthetisierten Aerogele thermisch mit mehreren Meßmethoden unter unterschiedlichen Bedingungen charakterisiert. Temperaturabhängige Messungen der spezifischen Wärmekapazität cp im Bereich von 32°C bis 1500°C ergaben für C-Aerogele verglichen mit den Literaturdaten von Graphit einen ähnlichen Verlauf. Allerdings steigt cp etwas schneller mit der Temperatur an, was auf eine „weichere“ Struktur hindeutet. Die maximale Abweichung beträgt etwa 11%. Messungen an einer Serie morphologisch identischer Aerogelproben, die im Temperaturbereich zwischen 800°C und 2500°C pyrolysiert bzw. geglüht wurden, ergeben eine Zunahme der Festkörperwärmeleitfähigkeit mit der Behandlungstemperatur um etwa einen Faktor 8. Stickstoffsorptions-, XRD-, Raman- und SAXS-Messungen an diesen Proben zeigen, dass dieser Effekt wesentlich durch das Wachstum der graphitischen Bereiche (Mikrokristallite) innerhalb der Primärpartikel des Aerogels bestimmt wird. Berechnungen auf Basis von Messungen der Temperaturleitfähigkeit weisen außerdem auch auf Veränderungen der Mikrokristallite hin. Gasdruckabhängige Messungen der Wärmeleitfähigkeit und der Vergleich zwischen Messungen unter Vakuum und unter Normaldruck an verschiedenen Aerogelmorphologien liefern Aussagen über den Gasanteil der Wärmeleitfähigkeit. Dabei zeigt sich, dass sich der Gasanteil der Wärmeleitfähigkeit in den Poren des Aerogels verglichen mit dem freien Gas durch die geeignete mittlere Porengröße erwartungsgemäß erheblich verringern lässt. Diese Ergebnisse stimmen in Rahmen der Messunsicherheit mit der Theorie überein. Durch infrarot-optische Messungen an C-Aerogelen konnte der Extinktionskoeffizient bestimmt und daraus der entsprechende Beitrag der Wärmestrahlung zur Wärmeleitfähigkeit berechnet werden. Temperaturabhängige Messungen der thermischen Diffusivität erlaubten mit der zur Verfügung stehenden Laser-Flash Apparatur die Bestimmung der Wärmeleitfähigkeit bis zu Temperaturen von 1500°C. Die Temperaturabhängigkeit der Wärmeleitfähigkeit der C-Aerogele zeigt eine Charakteristik, die mit den separat gemessenen bzw. berechneten Beiträgen zur Wärmeleitfähigkeit und der Theorie im Rahmen der Messunsicherheit gut übereinstimmen. Auf der Basis der gewonnenen Messdaten ist es möglich, die Wärmeleitfähigkeit von Aerogelen für Anwendungen über die maximale Messtemperatur von 1500°C durch Extrapolation vorherzusagen. Die niedrigste Wärmeleitfähigkeit der im Rahmen dieser Arbeit synthetisierten C-Aerogele beträgt danach etwa 0,17 W/(m•K) bei 2500°C unter Argonatmosphäre. Kommerziell erhältliche Hochtemperatur-Wärmedämmstoffe, wie z. B. Kohlefaserfilze oder Kohlenstoffschäume weisen Wärmeleitfähigkeiten im Bereich von etwa 0,7 bis 0,9 W/(m•K) bei einer Temperatur von 2000°C auf. Die Messungen zeigen, dass die vergleichsweise niedrigen Wärmeleitfähigkeiten von C-Aerogelen bei hohen Temperaturen durch die Unterdrückung des Gas- und Strahlungsbeitrags der Wärmeleitfähigkeit bedingt sind. / The scope of the present work is the synthesis, the characterisation and the optimisation of carbon (c-) aerogels as high temperature insulation (> 1000°C). Carbon aerogels are open porous monolithic solids which are produced by pyrolysis of organic aerogels. These organic precursors are synthesized via the sol-gel route. For the structural characterisation of the aerogels the samples were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Raman spectroscopy, nitrogen sorption measurements and small angle X-ray scattering (SAXS). The thermal properties of the aerogels were quantified by laser flash measurements, differential scanning calorimetry (DSC), thermographic and infrared optical measurements. The inner structure of the aerogels consists of a three dimensional skeleton of primary particles which grow during the sol-gel synthesis and are connected to each other without any orientation. The voids between the particles are the pores. The mean particle and pore size of the aerogel can be tailored specifically via the concentration of the catalyst and the degree of dilution of the educt solution on the one hand and the synthesis time and -temperature on the other hand. The range of the mean particle and pore sizes of the aerogels synthesized within this work extends from some tens of nanometers to some microns. The density of the samples was varied in the range from 225 kg/m3 to 635 kg/m3. The impact of pyrolysis and annealing temperature on the morphology and the thermal properties of carbon aerogels was investigated for the first time systematically on one series of samples. For that purpose the samples were pyrolysed and annealed in the range of 800 to 2500°C. To separate and minimize the individual contributions, the thermal conductivity of the synthesized c-aerogels were thermally characterized by different measuring methods under various conditions. The measurements of the specific heat in the range of 32 to 1500°C yield values similar to the literature data of graphite; however slightly systematic higher values of up to 11% were observed as expected for “softer” solids with high interfacial surface areas. Measurements of a series of carbon aerogels with identical morphology, however different annealing temperatures, show an increase of the solid thermal conductivity with increasing annealing temperature of up to a factor of about 8 for temperatures between 800°C and 2500°C. Nitrogen sorption-, XRD-, Raman-, and SAXS-measurements reveal that this effect is dominated by the growth of graphitic domains (microcrystallites) within the primary particles of the aerogel. In addition calculations based on measurements of the thermal diffusivity indicate changes of the microcrystallites. Measurements of the thermal conductivity of aerogels with different morphologies as a function of gas pressure and the comparison of the data taken under vacuum and normal pressure yield informations about the gaseous contribution to the thermal conductivity. As expected, the gaseous thermal conductivity within the pores of the aerogel can be reduced compared to the free gas when the pore size is in the range of the mean free path of the gas molecules or smaller. The results agree with the theory within the measuremental uncertainties. Infrared optical measurements provide the extinction coefficient of carbon aerogels, from which the radiative contribution to the thermal conductivity could be determined. The laser flash equipment available at the ZAE Bayern allows measurements of the thermal diffusivity up to 1500°C from which the thermal conductivity can be determined. The thermal conductivity of carbon aerogels as a function of temperature is well described by a superposition of the single contributions determined separately and the theoretical predictions within the uncertainties. Based on the experimental data it is possible to extrapolate the thermal conductivity of carbon aerogels for applications beyond the maximum temperature investigated (1500°C). Thus the lowest thermal conductivity of the carbon aerogels synthesized in the scope of this work is about 0,17 W/(m•K) at 2500°C in argon atmosphere. This value is about a factor 4 lower than for the best commercially available insulation material.
3

Experimentelle Bestimmung der effektiven Wärmeleitfähigkeit schüttfähiger Wärmedämmstoffe für thermische Energiespeicher

Mücke, Jan Markus 05 December 2019 (has links)
Im Rahmen dieser Arbeit erfolgte der Aufbau eines neuartigen Versuchsstandes zum praxisnahen Test von Wandaufbauten (VS-WA; Probendimension: 1,9 m x 1,9 m x 0,5 m). Mit dem VS sind praxisnahe Untersuchungen von Dämm- und Dichtstoffen sowie Wandsegmentmaterialien thermischer Energiespeicher in einer Einheit durchführbar. Aufgrund der drehbaren Lagerung des VS ist es möglich, vertikale (Wandbereich) und horizontale (Deckenbereich) Aufbauten zu untersuchen. Mit dem VS erfolgt eine experimentelle Bestimmung von effektiven Wärmeleitfähigkeiten zweier aussichtsreicher Wärmedämmstoffe (Polyurethan-Granulat und expandierte Polystyrol-Partikel). Die Untersuchungsergebnisse zeigen für den vertikalen Betrieb des VS eine erhöhte effektive Wärmeleitfähigkeit im Vergleich zu den Stoffwerten der Hersteller. Der Grund hierfür ist, basierend auf der Auswertung von Temperaturprofilen, ein signifikanter Anteil an freier Konvektion. Dies ist trotz niedriger Permeabilitäten der untersuchten Schüttgüter und demnach entgegen dem aktuellen Stand der Wissenschaft der Fall. Ohne den neuen VS mit den hier realisierten Maßen, wären diese Effekte nicht messbar gewesen (z. B. bei Untersuchungen mit Ein- oder Zwei-Platten-Apparaturen). Die Ergebnisse können dazu beitragen, erhöhte Wärmeverluste an realen Bauwerken zu erklären und zu vermeiden. / Within the context of this thesis, a new test rig for the practical testing of wall structures (VS-WA; sample size: 1.9 m x 1.9 m x 0.5 m) was set up. With the test rig, practical investigations of insulating and sealing materials as well as wall segment materials of thermal energy stores are possible in one unit. Since the test rig is pivoted it is also possible to examine vertical (wall area) and horizontal (ceiling area) structures. The present thesis deals with the experimental determination of the effective thermal conductivity of two promising thermal insulation materials (polyurethane granulate and expanded polystyrene particles). The test results show an increased effective thermal conductivity for the vertical orientation of the VS-WA compared to the material properties given by the manufacturers. The reason for this is, based on the evaluation of temperature profiles, a significant portion of free convection. This is the case despite low permeabilities of the bulk materials investigated and thus contrary to the current state of scientific knowledge. Without the new test rig with the dimensions realized here, the discovered effects could not have been observed (e.g. investigations with one- or two-plate apparatuses). The results can contribute to explain and avoid increased heat losses in real building structures.

Page generated in 0.0482 seconds