• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cross-validatory Model Comparison and Divergent Regions Detection using iIS and iWAIC for Disease Mapping

2015 March 1900 (has links)
The well-documented problems associated with mapping raw rates of disease have resulted in an increased use of Bayesian hierarchical models to produce maps of "smoothed'' estimates of disease rates. Two statistical problems arise in using Bayesian hierarchical models for disease mapping. The first problem is in comparing goodness of fit of various models, which can be used to test different hypotheses. The second problem is in identifying outliers/divergent regions with unusually high or low residual risk of disease, or those whose disease rates are not well fitted. The results of outlier detection may generate further hypotheses as to what additional covariates might be necessary for explaining the disease. Leave-one-out cross-validatory (LOOCV) model assessment has been used for these two problems. However, actual LOOCV is time-consuming. This thesis introduces two methods, namely iIS and iWAIC, for approximating LOOCV, using only Markov chain samples simulated from a posterior distribution based on a full data set. In iIS and iWAIC, we first integrate the latent variables without reference to holdout observation, then apply IS and WAIC approximations to the integrated predictive density and evaluation function. We apply iIS and iWAIC to two real data sets. Our empirical results show that iIS and iWAIC can provide significantly better estimation of LOOCV model assessment than existing methods including DIC, Importance Sampling, WAIC, posterior checking and Ghosting methods.
2

Inferência Bayesiana em Modelos de Volatilidade Estocástica usando Métodos de Monte Carlo Hamiltoniano / Bayesian Inference in Stochastic Volatility Models using Hamiltonian Monte Carlo Methods

Dias, David de Souza 10 August 2018 (has links)
Este trabalho apresenta um estudo através da abordagem Bayesiana em modelos de volatilidade estocástica, para modelagem de séries temporais financeiras, com o uso do método de Monte Carlo Hamiltoniano (HMC). Propomos o uso de outras distribuições para os erros da equação de observações do modelos de volatilidade estocástica, além da distribuição Gaussiana, para tratar problemas como caudas pesadas e assimetria nos retornos. Além disso, utilizamos critérios de informações, recentemente desenvolvidos, WAIC e LOO que aproximam a metodologia de validação cruzada, para realizar a seleção de modelos. No decorrer do trabalho, estudamos a qualidade do método HMC através de exemplos, estudo de simulação e aplicação a conjunto de dados. Adicionalmente, avaliamos a performance dos modelos e métodos propostos através do cálculo de estimativas para o Valor em Risco (VaR) para múltiplos horizontes de tempo. / This paper presents a study using Bayesian approach in stochastic volatility models for modeling financial time series, using Hamiltonian Monte Carlo methods (HMC). We propose the use of other distributions for the errors of the equation at stochastic volatiliy model, besides the Gaussian distribution, to treat the problem as heavy tails and asymmetry in the returns. Moreover, we use recently developed information criteria WAIC and LOO that approximate the crossvalidation methodology, to perform the selection of models. Throughout this work, we study the quality of the HMC methods through examples, simulation study and application to dataset. In addition, we evaluated the performance of the proposed models and methods by calculating estimates for Value at Risk (VaR) for multiple time horizons.

Page generated in 0.0178 seconds