141 |
A biogeographical survey of wall vegetation in urban Hong Kong /Chan, Oi-ping. January 1992 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1993.
|
142 |
Design, development and testing of an automated system for measuring wall thicknesses in turbine blades with cooling channelsJiang, Zhengyi January 2016 (has links)
Cooling channels are designed in blades to protect the blades from damage at high temperature in a gas turbine. ELE Advanced Technology Ltd. is a UK company specialised in machining cooling channels in turbine blades using electro-chemical techniques. The wall thicknesses between these cooling channels and the surface of the turbine blade influences the performance of cooling channels and are required to be accurately machined and then inspected. At present, the company measures the wall thicknesses using a hand-held contact ultrasonic probe, which is time-consuming and not very accurate. In this project, an inspection machine has been designed and built for the purpose of automating the procedure of measuring wall thicknesses in turbine blades. The inspection machine measures wall thicknesses based on immersion ultrasonic testing technique and the actuator is a six-axis industrial robot controlled by a computer. Control algorithms have been developed to automate the entire measuring process. Acquired ultrasonic data is also automatically processed using Matlab scripts for wall thickness evaluation. However, prior to the ultrasonic measurement, the probe path has to be calculated. Matlab script has been developed to automatically calculate a probe path using a point cloud of the blade digitized on a CMM as an input. The calculation of the probe path, in general, involves triangulation, parameterisation and B-spline surface approximation. Normal 3D triangulation methods were tested; nevertheless, the results were unsatisfactory. Therefore, a triangulation algorithm is developed based on B-spline curve and 2D Delaunay triangulation. After the probe path is calculated, a localisation method, based on iterative closest point algorithm, is implemented to transform the probe path from CMM to the inspection machine. Several experiments were designed and conducted to study the capability of the ultrasonic probe. Experimental results confirmed the feasibility of using an immersion ultrasonic probe for measuring the wall thicknesses; however, the experiments revealed several limitations of immersion ultrasonic testing, such as the angle of incidence of ultrasonic waves must be maintained within an angular deviation of ±1° from the surface normal to achieve accurate test results. Wall thicknesses of three turbine blades from one batch were measured on the inspection machine. A CT scan image was used as reference to compare the measured wall thicknesses with results obtained using contact probes. The comparison showed the wall thicknesses measured on the inspection machine were much more accurate than using contact probes.
|
143 |
The role of brown algal cell walls in morphogenesis and developmentLinardic, Marina January 2018 (has links)
Morphogenesis in walled organisms represents a highly controlled process by which the variability of shapes arises through changes in the structure and mechanics of the cell wall. Despite taking different evolutionary paths, land plants and some brown algae exhibit great developmental and morphological similarities. In two brown algal model systems: the Sargassum muticum apex and the Fucus serratus embryo, I have used a combination of imaging techniques, growth analyses, surgical and pharmacological treatments, as well as molecular, biochemical and mechanical approaches to characterise the growth patterns and the cell wall contribution to shape change. To understand how the adult algal body is formed, I examined the branching strategy (phyllotaxis) in S. muticum. My results suggest that in S. muticum the spiral phyllotactic pattern and the apical cell division pattern are not linked. The phytohormone auxin and the biochemical changes of the cell wall do not seem to be correlated with the bud outgrowth, contrary to observations in plants. In summary, these results suggest Sargassum convergently developed a distinct growth mechanism with similar shape outcome as observed in plants. This dissertation is one of the first attempts to explore cell wall mechanics in brown algal development and its correlation with underlying cell wall biochemistry utilising the Fucus embryo as a known system. The results suggest a correlation between the wall mechanics and alginate biochemistry with the growing and non-growing regions of the embryo. In addition, altering cell wall deposition or composition has a strong effect on embryo rhizoid elongation and is, in certain cases, accompanied by significant increase in cell wall stiffness and reduction of alginate epitopes. Furthermore, preliminary results exploring transcriptomic changes during development indicate differential expression of particular alginate biosynthesis enzymes (mannuronan C5 epimerases) during development, suggesting alginate conformational modifications might be stage specific. These results contribute to the current knowledge addressing the importance of cell walls in brown algal development using novel tools and approaches. Understanding developmental processes in brown algae will provide a better insight how similar morphogenetic traits are established using different body-building mechanisms.
|
144 |
Evolution of stomata in mosses (Bryophyta): From molecules to form and functionMerced-Alejandro, Amelia 01 May 2015 (has links)
As one of the first land plant groups to diversify, mosses are central in understanding the origin, diversification, and early function of stomata. Unlike tracheophytes that have stomata on anatomically complex leaves and stems, mosses bear stomata exclusively on spore-bearing organs (capsules). However, stomata do not occur in all mosses and, indeed, are absence in the earliest-divergent mosses (Takakia, Andreaea, Andreaeobryum and Sphagnum), suggesting that stomata originated in mosses independently of other plants. The occurrence of structurally unique pseudostomata in Sphagnum further confounds the resolution of homology of moss stomata with those of other plants. The five studies included in this dissertation are aimed at clarifying the structure, development and evolution of moss stomata. The first study focuses on the sporophyte anatomy and stomatal ultrastructure in two structurally and phylogenetically divergent mosses, Oedipodium and Ephemerum. Oedipodium is the sister to peristomate mosses and the first extant moss with true stomata. This monospecific genus has an elaborated capsule with an extended apophysis bearing numerous long-pored stomata. In contrast, Ephemerum nests within the peristomate mosses and has a reduced capsule that lacks an apophysis and has a few round-pored stomata. Ultrastructure of stomata is similar in these two mosses and comparable to that of tracheophytes, except that the stomata of mosses are not as structurally distinct from epidermal cells as are tracheophyte stomata. Anatomical features such as the presence of a cuticle, water-conducting cells, and spongy tissues with large areas for gas exchange are more pronounced in Oedipodium sporophytes and support the role of stomata in gas exchange and water transport during development and maturation. The second study examines changes in pectin composition during development in the model moss Funaria. Stomatal movement in tracheophytes requires guard cell walls to be strong, yet flexible, because they have to undergo reversible deformation to open and close the pore. Pectins are necessary for wall flexibility and proper stomatal functioning in seed plants. In this study of Funaria, immunogold-labeling using five antibodies to pectin epitopes was conducted on guard cell walls during development to relate these features to the limited movement of stomata in moss. Movement of Funaria stomata coincides with capsule expansion when guard cell walls are thin and pectinaceous. Walls dramatically increase in thickness after pore formation and the pectin content significantly decreases in mature guard cell walls, suggesting that a decrease in flexibility is responsible for the inability to open a close previously reported in older moss guard cells. Because this was the first study to demonstrate changes in pectin composition during stomatal development in any plant, a similar study was done on Arabidopsis to identify the main types of pectins in guard cell walls. Localization of pectins in guard cell walls of Arabidopsis is similar to mosses in the stage they can move, with homogeneous walls rich in arabinan pectins that are required for wall flexibility. This study extends knowledge of pectin composition from stomata of the moss Funaria with limited stomatal movement to an angiosperm in which stomatal activity is crucial to the physiological health of the plant. The fourth study describes stomata development and internal changes in sporophyte anatomy that lead to formation of air spaces in the moss Funaria. Developing sporophytes at different stages were examined using light, fluorescence and electron microscopy; immunogold-labeling was used to investigate the presence of pectin in the newly formed cavities. Stomata in mosses do not develop from a self-generating meristemoid like in Arabidopsis, but instead they originate from a protodermal cell that differentiates directly into a guard mother cell. Epidermal cells develop from protodermal or other epidermal cells, i.e., there are no stomatal lineage ground cells. This developmental pattern is congruent with the presence of a gene ortholog of FAMA, but not SPCH and MUTE, in Physcomitrella. The final study in this dissertation focuses on the enigmatic Sphagnum. Although true stomata are absent in early-divergent mosses, Sphagnum has specialized epidermal cells, pseudostomata, that partially separate but do not open to the inside. To further understand the structure, function and evolution of pseudostomata, capsule anatomy and ultrastructure of pseudostomata were detailed. As in moss stomata, pseudostomata wall architecture and behavior facilitate capsule dehydration, shape change, and dehiscence, supporting this common function. Unlike other moss stomata, pseudostomata collapse along their ventral walls and they lack a substomatal cavity. Similarities to true stomata include two modified epidermal cells with specialized cell walls that separate by cuticle deposition and respond to drying. Pseudostomata may be interpreted as modified stomata that suppressed substomatal cavity formation, which in turn eliminated pore development. However, clarification of the homology of pseudostomata and moss stomata will require genomic studies integrated with physiological and structural data. The studies described in this dissertation significantly advance our understanding of moss stomatal development and structure, and provide a comparison point to better evaluate the evolution of stomata. Moss capsule anatomy coupled with the exclusive existence of stomata on capsules supports the concept that stomata in moss are involve in gas exchange but also facilitate drying and dispersal of spores. Changes in wall architecture coupled with a decrease in total pectin explain the inability of mature stomata to move. Development and distribution of stomata in Funaria provides evidence of a direct and less elaborated mechanism for stomatal development than described in Arabidopsis. Resolving relationships among early land plants, especially hornworts and mosses, the only bryophyte groups with stomata, is critical to understanding stomata evolution. Evaluated together, the results of this dissertation are consistent with a single origin of stomata in land plants.
|
145 |
Computation of the Rigidities of Shear Walls with OpeningsRajbhandari, Anila 01 December 2011 (has links)
The main objective of the study is to verify the accuracy of the approximate hand calculation method used extensively by the engineers for the calculation of the rigidity of shear walls with openings. Different types of shear walls are considered varying in the dimensions and positions of the opening, however, maintaining the same basic material properties. The results obtained by the hand calculation are compared to the finite element approach to check for the discrepancy. The finite element analysis software NISA/DISPLAY IV and SAP2000 is considered for the purpose.
|
146 |
Jeff Wall v reflexi literatury / Jeff Wall reflected by literatureŽitňanská, Klára January 2013 (has links)
Analysis of the texts written about Jeff Wall. Exploring the relationship between texts about Wall and his own essays about his work. Looking for some links or some conflicts between texts. Studying structure of the main topics discussed in essays about Wall and his own written replies to these topics. Wall's position on the art scene based on literature.
|
147 |
Pressure-impulse impact problems and plunging wave jet impactWood, Deborah Jane January 1997 (has links)
No description available.
|
148 |
Cortical microtubules and physical properties of cellulose microfibrils during primary cell wall formation in Arabidopsis thalianaFujita, Miki 05 1900 (has links)
Growth anisotropy, in which cells grow predominantly in one direction, is common in plant cells, and an essential event for plant form and function. The direction and degree of growth anisotropy are governed by the mechanical properties of the primary cell wall. When aligned in a parallel manner, cellulose microfibrils accommodate great resistance in the direction of their alignment to expansion driven by isotropic turgor pressure. Using the Arabidopsis thaliana inflorescence stem as a model system, field emission scanning electron microscopy (FESEM) analysis demonstrated that the establishment of parallel arrangement of microfibrils is closely correlated with anisotropic cell expansion. In the novel anisotropy 1 (any1) mutant allele of the primary cellulose synthase CesA1, growth defects were correlated with random cellulose microfibril patterns in some inflorescence stem tissues.
Microtubules have been considered to be the most likely candidates for controlling the orientation of cellulose microfibrils. Recent studies have indeed demonstrated a close association of the plasma membrane-localized cellulose-synthase-complexes (CSCs) that produce cellulose and cortical microtubules. Despite this close association, microtubule disruption did not cause cellulose microfibrils to lose parallel alignment in the radial and inner periclinal walls of cells in the inflorescence stem, suggesting that microtubules influence mechanical properties of cellulose microfibrils other than orientation. X-ray diffraction analysis demonstrated that cellulose crystallinity in wild-type plants declines at the growth-promoting temperature of 29°C, whereas crystallinity fails to adapt and remains high in mor1-1, the temperature-sensitive mutant whose microtubule arrays become disorganized at its restrictive temperature (29°C). This finding suggests that organized microtubules are involved in reducing cellulose crystallinity that normally accompanies increased cell expansion.
Live-cell imaging of CSCs by tracking a yellow fluorescent protein (YFP)-tagged CesA6 subunit in hypocotyl cells demonstrated that dynamic and well-organized microtubules affect the velocity, the direction of movement, and the density of CSCs, suggesting that there is a close relationship between microtubules and CSCs. Together with the finding that microtubules also control the distribution of COBRA, a GPI-anchored wall protein that is essential for growth anisotropy, I discuss the variety of roles microtubules play in anisotropic growth. / Science, Faculty of / Botany, Department of / Graduate
|
149 |
Comparative analysis of single-wythe, non-composite double-wythe, and composite double-wythe tilt-up panelsSandoval, Robee Ybañez January 1900 (has links)
Master of Science / Department of Architectural Engineering and Construction Science / Kimberly Waggle Kramer / Insulated precast concrete sandwich panels are commonly used for exterior cladding on a building. In recent years, insulated tilt-up concrete sandwich panels are being used for the exterior load-bearing walls on a building. The insulation is sandwiched between exterior and interior concrete layers to reduce the heating and cooling costs for the structure. The panels can be designed as composite, partially composite, or non-composite. The shear ties are used to achieve these varying degrees of composite action between the concrete layers. A parametric study analyzing the standard, solid single-wythe tilt-up concrete wall panel and solid sandwich (double-wythe separated by rigid insulation) tilt-up concrete wall panels subjected to eccentric axial loads and out-of-plane seismic loads is presented. The sandwich tilt-up panel is divided into two categories – non-composite and composite wall panels. The height and width of the different types of tilt-up wall panel is 23 feet (21 feet plus 2-foot parapet) and 16 feet, respectively. The solid standard panel (non-sandwich) is 5.5 inches in thickness; the non-composite sandwich panel is composed of 3.5-inch architectural wythe, 2.5-inch rigid insulation, and 5.5-inch interior load bearing concrete wythe; and the composite sandwich panel is composed of 3.5-inch exterior, load bearing concrete wythe, 2.5-inch insulation, and 5.5-inch interior, load bearing concrete wythe. The procedure used to design the tilt-up wall panels is the Alternative Method for Out-of-Plane Slender Wall Analysis per Section 11.8 of ACI 318-14 Building Code Requirements for Structural Concrete and Commentary.
The results indicated that for the given panels, the applied ultimate moment and design moment strength is the greatest for the composite sandwich tilt-up concrete panel. The standard tilt-up concrete panel exhibits the greatest service load deflection. The non-composite sandwich tilt-up concrete panel induced the greatest vertical stress.
Additionally, the additional requirements regarding forming materials, casting, and crane capacity is covered in this report. Lastly, the energy efficiency due to the heat loss and heat gain of sandwich panels is briefly discussed in this report. The sandwich tilt-up panels exhibit greater energy efficiency than standard tilt-up panels with or without insulation.
|
150 |
Electrosensory-based Search Strategies In Weakly Electric FishRochman, Rebecca January 2015 (has links)
Effective exploration of the environment is a critical aspect of adaptive behaviour, enabling animals to identify food sources, potential mates, refuge locations, and other important resources. The particular strategies used during exploratory behaviours depend on a variety of factors including context, personality traits and natural ecology. Weakly electric fish rely specifically on a short-range electric sense to search and locate objects in their environment in low-light conditions. However, little is known about the exploratory strategies used. We characterized the exploratory movements of two species of weakly electric fish, Apteronotus leptorhynchus and Apteronotus albifrons, in a laboratory setting. Our results suggest that there are behavioural differences between species in their exploratory strategies. Apteronotus albifrons spent more time in the open, travelled at a slower speed when out in the open, and had a higher total feeding time. Interestingly, Apteronotus leptorhynchus had a higher total displacement and preference for wall-following. A subsequent study on the behavioural function of wall-following in the two species suggested that wall-following is used for exploration in weakly electric fish, rather than for protection, and is not an artifact of restricted movement and tank shape.
|
Page generated in 0.0259 seconds