• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 165
  • 22
  • 15
  • 10
  • 6
  • 6
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 451
  • 451
  • 179
  • 170
  • 95
  • 86
  • 72
  • 52
  • 48
  • 46
  • 42
  • 41
  • 40
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A coupled stress-flow numerical modelling methodology for identifying pore-pressure changes due to total soil moisture loading

Anochikwa, Collins Ifeanyichukwu 13 April 2010
This thesis describes a numerical modelling methodology to interpret dynamic fluctuations in pore-pressures to isolate the effects of loading associated with changes in total soil moisture (site water balance) alone. The methodology is required to enhance the data-interpretation and performance-assessment for potential applications of a novel piezometer-based, large-scale, geological weighing lysimeter. This interpretative methodology is based on a method of superimposing computer-based numerical analyses of independent causes of pore-pressure transients to separate the different pore-pressure responses. Finite element coupled load-deformation and seepage numerical models were used to simulate field-observed piezometric responses to water table fluctuations and loading induced by surface water balance (using meteorological data).<p> Transient pore-pressures in a deep clay-till-aquitard arising from variations in the water table within a surface-aquifer were modelled and removed from the measured pore-pressure record (corrected for earth tide and barometric effects) to isolate and identify pore-pressure fluctuations arising from loading associated with site water balance. These estimates were compared to simulated pore-pressure responses to an independently measured water balance using meteorological instrumentation. The simulations and observations of the pore-pressure responses to surface water balance were in good agreement over the dry years of a 9-year period. Some periods of significant differences did occur during wet years in which runoff, which is not accounted for in the current analyses, may have occurred.<p> The identification of pore-pressure response to total soil moisture loading using the developed numerical modelling methodology enhances the potential for the deployment of the piezometer-based geological weighing lysimeter for different applications which include real-time monitoring of site water balance and hydrological events such as precipitation and flooding. Interestingly, the disparity occurring during the wet years even suggests the potential to adapt the method to monitor runoff (net lateral flow).<p> The methodology also demonstrated the capability to accurately estimate in situ elastic and hydraulic parameters. Calibration of the model yielded equivalent properties of the aquitard (hydraulic conductivity, Kv, of 2.1E-5 m/day and specific storage, Ss, of 1.36E-5 /m) for a Skemptons B-bar coefficient of 0.91 for an assumed porosity of 0.26. Sensitivity tests also provided insight into the consolidation and pressure propagation (swelling) behaviour of the aquitard under parametric variations. The parameters obtained are consistent with range of values reported for glacial clay till soil. Therefore, this work also provides a unique case history of a method for determining, large scale, in situ material properties for geo-engineers and scientists to explore by simply using piezometric and meteorological data.
122

Assessing hydrological processes controlling the water balance of lakes in the Peace-Athabasca Delta, Alberta, Canada using water isotope tracers

Falcone, Matthew January 2007 (has links)
One of the world’s largest freshwater deltas (~4000 km2), the Peace-Athabasca Delta (PAD), is located at the convergence of the Peace and Athabasca rivers and Lake Athabasca in northern Alberta, Canada. Since the early 1970s, there has been increasing concern regarding the ecological impacts on the PAD after flow regulation of the Peace River began in 1968, decreased discharge in the Peace and Athabasca rivers as a result of hydroclimatic changes in Western Canada, and increased Athabasca River water usage by oil sands development to the south. This thesis is part of an ongoing, multi-disciplinary project assessing current and past hydrological and ecological conditions in the PAD. Research conducted in this thesis aims to better understand the processes controlling water balance of lakes in the PAD using mainly stable water isotope data collected from lakes and their input sources. Isotope data are used to describe and quantify hydrological processes for individual lakes (seasonal and annual) and across the delta and are supported by other chemical and hydrometric data. An isotopic framework in d18O-d2H-space is developed for the PAD using evaporation-flux-weighted local climate data, and isotopic data collected from a reference basin, lakes throughout the PAD, and lake input sources (i.e., snowmelt, rainfall, and river water). The framework is comprised of two reference lines, the Local Meteoric Water Line, which is based on measured isotopic composition of precipitation, and the Local Evaporation Line, which is based on modelled isotopic composition of reference points. Evaporation pan data is used to assess short-term variations in key isotopic reference values, which are important for addressing short-term changes in the isotopic signature of shallow basins. This framework is used in subsequent chapters including assessment of seasonal and annual water balance of two hydrologically-contrasting shallow lakes, and to quantify the impacts of flood water and snowmelt on a set of 45 lakes in spring 2003. Five years of isotope data using time-series analysis and the isotopic framework suggested that a perched (isolated) lake and its catchment (forest and bedrock) in the northern, relict Peace sector captured sufficient rain, snow, and runoff to maintain a relatively stable water balance, and also that a low-lying lake in the southern, active Athabasca sector was regularly replenished with river water in both spring and summer. Snowmelt and rainfall were found to have diluted the perched basin by an average of 16% and 28 % respectively, while spring and summer floods were found to almost completely flush the low-lying lake. Using the spring 2003 regional dataset, flooded lakes were separated from snowmelt-dominated lakes through use of suspended sediment concentrations, isotope data, and field observations. Application of an isotope mixing model translated d18O values into a range of replenishment amount by either river water or snowmelt, which compared well with hydrological conditions at the time of sampling and previously classified drainage types of the lakes. Spatial mapping of replenishment amounts illustrated flooding of much of the Athabasca sector due to ice-jams, except for two sub-regions isolated from flooding by artificial and natural northern diversion of flow from the Athabasca River. It is also shown that most of the relict landscape of the Peace sector was replenished by snowmelt except for a few low-lying lakes close to the Peace River and its tributaries. Overall, improved understanding of lake and regional hydrology in the PAD, especially the ability to quantify the affects of various lake inputs, will improve the ability to develop effective guidelines and management practices in the PAD as lakes respond to future changes in climate and river discharge.
123

Assessing hydrological processes controlling the water balance of lakes in the Peace-Athabasca Delta, Alberta, Canada using water isotope tracers

Falcone, Matthew January 2007 (has links)
One of the world’s largest freshwater deltas (~4000 km2), the Peace-Athabasca Delta (PAD), is located at the convergence of the Peace and Athabasca rivers and Lake Athabasca in northern Alberta, Canada. Since the early 1970s, there has been increasing concern regarding the ecological impacts on the PAD after flow regulation of the Peace River began in 1968, decreased discharge in the Peace and Athabasca rivers as a result of hydroclimatic changes in Western Canada, and increased Athabasca River water usage by oil sands development to the south. This thesis is part of an ongoing, multi-disciplinary project assessing current and past hydrological and ecological conditions in the PAD. Research conducted in this thesis aims to better understand the processes controlling water balance of lakes in the PAD using mainly stable water isotope data collected from lakes and their input sources. Isotope data are used to describe and quantify hydrological processes for individual lakes (seasonal and annual) and across the delta and are supported by other chemical and hydrometric data. An isotopic framework in d18O-d2H-space is developed for the PAD using evaporation-flux-weighted local climate data, and isotopic data collected from a reference basin, lakes throughout the PAD, and lake input sources (i.e., snowmelt, rainfall, and river water). The framework is comprised of two reference lines, the Local Meteoric Water Line, which is based on measured isotopic composition of precipitation, and the Local Evaporation Line, which is based on modelled isotopic composition of reference points. Evaporation pan data is used to assess short-term variations in key isotopic reference values, which are important for addressing short-term changes in the isotopic signature of shallow basins. This framework is used in subsequent chapters including assessment of seasonal and annual water balance of two hydrologically-contrasting shallow lakes, and to quantify the impacts of flood water and snowmelt on a set of 45 lakes in spring 2003. Five years of isotope data using time-series analysis and the isotopic framework suggested that a perched (isolated) lake and its catchment (forest and bedrock) in the northern, relict Peace sector captured sufficient rain, snow, and runoff to maintain a relatively stable water balance, and also that a low-lying lake in the southern, active Athabasca sector was regularly replenished with river water in both spring and summer. Snowmelt and rainfall were found to have diluted the perched basin by an average of 16% and 28 % respectively, while spring and summer floods were found to almost completely flush the low-lying lake. Using the spring 2003 regional dataset, flooded lakes were separated from snowmelt-dominated lakes through use of suspended sediment concentrations, isotope data, and field observations. Application of an isotope mixing model translated d18O values into a range of replenishment amount by either river water or snowmelt, which compared well with hydrological conditions at the time of sampling and previously classified drainage types of the lakes. Spatial mapping of replenishment amounts illustrated flooding of much of the Athabasca sector due to ice-jams, except for two sub-regions isolated from flooding by artificial and natural northern diversion of flow from the Athabasca River. It is also shown that most of the relict landscape of the Peace sector was replenished by snowmelt except for a few low-lying lakes close to the Peace River and its tributaries. Overall, improved understanding of lake and regional hydrology in the PAD, especially the ability to quantify the affects of various lake inputs, will improve the ability to develop effective guidelines and management practices in the PAD as lakes respond to future changes in climate and river discharge.
124

Irrigation with wastewater in Andhra Pradesh, India, a water balance evaluation along Peerzadiguda canal / Bevattning med avloppsvatten i AndhraPradesh, Indien, en vattenbalansutvärdering längs Peerzadiguda kanal

Hytteborn, Julia January 2005 (has links)
Studien behandlar bevattningsgivornas storlek av avloppsvatten längs Peerzadiguda bevattningskanal i Andhra Pradesh, Indien. Peerzadiguda bevattningskanal är belägen norr om Musifloden nedströms Hyderabad som är huvudstad i delstaten Andhra Pradesh i Indien. I regioner med knappa vattenresurser kan avloppsvatten vara en värdefull resurs i jordbruk som kräver bevattning. Så är fallet längs Musifloden som innehåller Hyderabads orenade och delvis renade avloppsvatten. Studieområdet är den del av marken runt Peerzadiguda bevattningskanal som är bevattnad av densamma. Flödet i kanalen mättes, vattenförlusterna uppskattades och bevattningen över hela området beräknades. I ett geografiskt informationssystem (GIS) beräknades arean på studieområdet och några kartor tillverkades. För några fält i området beräknades också den aktuella bevattningen med mätningar av flödet i bevattningskanalerna på fälten och med hjälp av intervjuer med lantbrukarna. Bevattningen av fälten utfördes med bassängbevattning. Den aktuella bevattningen användes i vattenbalansberäkningar för rotzonen för de grödor som växte i området: grönsaker, fodergräs och ris. En optimal bevattning beräknades. Bevattningen över hela studieområdet beräknades till 41 mm per dag. Den aktuella bevattningen som uppmättes på fälten var mindre men de utförda vattenbalansberäkningarna visade att vattenförluster förekom, i vissa fall stora sådana. När den optimal bevattning användes i beräkningarna minskade förlusterna. Stora vattengivor och användningen av bassänbevattning och leder till vattenförluster och att stora mängder patogener tillförs jorden. / This thesis focuses on the amounts of wastewater irrigating the land along Peerzadiguda irrigation canal in Andhra Pradesh, India. The Peerzadiguda irrigation canal is located north of Musi river downstream Hyderabad, the capital of the Indian state Andhra Pradesh. In regions where the freshwater resources are scarce, wastewater can become a valuable resource in irrigated agriculture. This is the case along Musi river that contains Hyderabad’s untreated and partly treated wastewater. The study area is the land around Peerzadiguda irrigation canal that is irrigated with water from the canal. The flow in the irrigation canal was measured, water losses were estimated and the irrigation amount over the whole study area was quantified. In a Geographical Information System (GIS) the size of the study area was measured and a few maps produced. The actual irrigation on a few farms was also calculated from measurements of the irrigation canals on the farms and from data from interviews with the farmers. The irrigation of the fields was preformed with basin irrigation. The values of the actual irrigation was used in water balance calculations of the root zone for the crops growing in the area: vegetable, paragrass and paddy rice. An optimal irrigation scheme was then calculated. The irrigation over the whole study area was calculated to 41 mm per day. The actual irrigation measured on the fields was lower but the water balance calculations showed that the irrigation leads to water losses, in some cases large losses. With the optimal irrigation amount used in the water balance the water losses were reduced. The use of basin irrigation and the large amount of irrigation water leads to water losses and larger amounts of pathogenic organisms is added to the soil.
125

A coupled stress-flow numerical modelling methodology for identifying pore-pressure changes due to total soil moisture loading

Anochikwa, Collins Ifeanyichukwu 13 April 2010 (has links)
This thesis describes a numerical modelling methodology to interpret dynamic fluctuations in pore-pressures to isolate the effects of loading associated with changes in total soil moisture (site water balance) alone. The methodology is required to enhance the data-interpretation and performance-assessment for potential applications of a novel piezometer-based, large-scale, geological weighing lysimeter. This interpretative methodology is based on a method of superimposing computer-based numerical analyses of independent causes of pore-pressure transients to separate the different pore-pressure responses. Finite element coupled load-deformation and seepage numerical models were used to simulate field-observed piezometric responses to water table fluctuations and loading induced by surface water balance (using meteorological data).<p> Transient pore-pressures in a deep clay-till-aquitard arising from variations in the water table within a surface-aquifer were modelled and removed from the measured pore-pressure record (corrected for earth tide and barometric effects) to isolate and identify pore-pressure fluctuations arising from loading associated with site water balance. These estimates were compared to simulated pore-pressure responses to an independently measured water balance using meteorological instrumentation. The simulations and observations of the pore-pressure responses to surface water balance were in good agreement over the dry years of a 9-year period. Some periods of significant differences did occur during wet years in which runoff, which is not accounted for in the current analyses, may have occurred.<p> The identification of pore-pressure response to total soil moisture loading using the developed numerical modelling methodology enhances the potential for the deployment of the piezometer-based geological weighing lysimeter for different applications which include real-time monitoring of site water balance and hydrological events such as precipitation and flooding. Interestingly, the disparity occurring during the wet years even suggests the potential to adapt the method to monitor runoff (net lateral flow).<p> The methodology also demonstrated the capability to accurately estimate in situ elastic and hydraulic parameters. Calibration of the model yielded equivalent properties of the aquitard (hydraulic conductivity, Kv, of 2.1E-5 m/day and specific storage, Ss, of 1.36E-5 /m) for a Skemptons B-bar coefficient of 0.91 for an assumed porosity of 0.26. Sensitivity tests also provided insight into the consolidation and pressure propagation (swelling) behaviour of the aquitard under parametric variations. The parameters obtained are consistent with range of values reported for glacial clay till soil. Therefore, this work also provides a unique case history of a method for determining, large scale, in situ material properties for geo-engineers and scientists to explore by simply using piezometric and meteorological data.
126

Investigation of Changes in Hydrological Processes using a Regional Climate Model

Bhuiyan, AKM Hassanuzzaman 23 August 2013 (has links)
This thesis evaluates regional hydrology using output from the Canadian Regional Climate Model (CRCM 4.1) and examines changes in the hydrological processes over the Churchill River Basin (CRB) by employing the Variable Infiltration Capacity (VIC) hydrology model. The CRCM evaluation has been performed by combining the atmospheric and the terrestrial water budget components of the hydrological cycle. The North American Regional Reanalysis (NARR) data are used where direct observations are not available. The outcome of the evaluation reveals the potential of the CRCM for use in long-term hydrological studies. The CRCM atmospheric moisture fluxes and storage tendencies show reasonable agreement with the NARR. The long-term moisture flux over the CRB was found to be generally divergent during summer. A systematic bias is observed in the CRCM precipitation and temperature. A quantile-based mapping of the cumulative distribution function is applied for precipitation adjustments. The temperature correction only involves shifting and scaling to adjust mean and variance. The results indicate that the techniques employed for correction are useful for hydrological studies. Bias-correction is also applied to the CRCM future climate. The CRCM bias-corrected data is then used for hydrological modeling of the CRB. The VIC-simulated streamflow exhibits acceptable agreement with observations. The VIC model's internal variables such as snow and soil moisture indicate that the model is capable of simulating internal process variables adequately. The VIC-simulated snow and soil moisture shows the potential of use as an alternative dataset for hydrological studies. Streamflow along with precipitation and temperature are analyzed for trends. No statistically significant trend is observed in the daily precipitation series. Results suggest that an increase in temperature may reduce accumulation of snow during fall and winter. The flow regime may be in transition from a snowmelt dominated regime to a rainfall dominated regime. Results from future climate simulations of the A2 emission scenario indicate a projected increase of streamflow, while the snow depth and duration exhibit a decrease. Soil moisture response to future climate warming shows an overall increase with a greater likelihood of occurrences of higher soil moisture.
127

Investigation of Changes in Hydrological Processes using a Regional Climate Model

Bhuiyan, AKM Hassanuzzaman 23 August 2013 (has links)
This thesis evaluates regional hydrology using output from the Canadian Regional Climate Model (CRCM 4.1) and examines changes in the hydrological processes over the Churchill River Basin (CRB) by employing the Variable Infiltration Capacity (VIC) hydrology model. The CRCM evaluation has been performed by combining the atmospheric and the terrestrial water budget components of the hydrological cycle. The North American Regional Reanalysis (NARR) data are used where direct observations are not available. The outcome of the evaluation reveals the potential of the CRCM for use in long-term hydrological studies. The CRCM atmospheric moisture fluxes and storage tendencies show reasonable agreement with the NARR. The long-term moisture flux over the CRB was found to be generally divergent during summer. A systematic bias is observed in the CRCM precipitation and temperature. A quantile-based mapping of the cumulative distribution function is applied for precipitation adjustments. The temperature correction only involves shifting and scaling to adjust mean and variance. The results indicate that the techniques employed for correction are useful for hydrological studies. Bias-correction is also applied to the CRCM future climate. The CRCM bias-corrected data is then used for hydrological modeling of the CRB. The VIC-simulated streamflow exhibits acceptable agreement with observations. The VIC model's internal variables such as snow and soil moisture indicate that the model is capable of simulating internal process variables adequately. The VIC-simulated snow and soil moisture shows the potential of use as an alternative dataset for hydrological studies. Streamflow along with precipitation and temperature are analyzed for trends. No statistically significant trend is observed in the daily precipitation series. Results suggest that an increase in temperature may reduce accumulation of snow during fall and winter. The flow regime may be in transition from a snowmelt dominated regime to a rainfall dominated regime. Results from future climate simulations of the A2 emission scenario indicate a projected increase of streamflow, while the snow depth and duration exhibit a decrease. Soil moisture response to future climate warming shows an overall increase with a greater likelihood of occurrences of higher soil moisture.
128

Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia

Ohta, Takeshi, Hiyama, Tetsuya, Tanaka, Hiroki, Kuwada, Takeshi, Maximov, Trofim C., Ohata, Tetsuo, Fukushima, Yoshihiro 15 June 2001 (has links)
No description available.
129

Climatic water balance and agricultural production in the Northern Plains of West Java

Resosudarmo, Sudjiran January 1977 (has links)
Typescript. / Thesis (Ph. D.)--University of Hawaii at Manoa, 1977. / Bibliography: leaves [217]-251. / Microfiche. / xiv, 251 leaves ill., maps
130

Canopy water balance of an elfin cloud forest at Alakahi, Hawaiʻi

DeLay, John K January 2005 (has links)
Thesis (M.A.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references (leaves 71-78). / x, 78 leaves, bound ill. (some col.), maps (some col.) 29 cm

Page generated in 0.0312 seconds