61 |
Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New ZealandNoisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
|
62 |
Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New ZealandNoisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
|
63 |
Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New ZealandNoisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
|
64 |
Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New ZealandNoisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
|
65 |
Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New ZealandNoisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
|
66 |
Effects of milk protein ingredients on physico-chemical properties of rice starch : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University Palmerston North, New ZealandNoisuwan, Angkana January 2009 (has links)
The overall aim of this thesis is to determine if the interactions between normal and waxy rice starch and milk proteins from four milk protein ingredients, namely skim milk powder (SMP), milk protein concentrate (MPC), sodium caseinate (NaCAS) and whey protein isolate (WPI) do occur, and to identify the mechanisms underlying these interactions. Different milk protein ingredients at various concentrations (0 to 10%, w/w) affected markedly and differently the pasting behaviour of 10% (w/w) rice starches. SMP delayed the pasting of both rice starches by increasing the onset temperature (Tonset) and the peak viscosity temperature (Tpeak) of pasting. This was mainly due to the presence of lactose and ions, which was further supported by the investigation of the effects of UFSMP (a solution of salts and lactose present in SMP at their proper concentration) and lactose. The addition of NaCAS also delayed the pasting of rice starch; Tpeak in the case of both starches was increased. For normal rice starch paste, MPC and WPI decreased the Tpeak. MPC had no affect on Tpeak of waxy rice starch paste. The qualitative viscoelastic behaviour of rice starch/milk protein ingredient gels obtained from the above pastes was dominated by the continuous phase made of the starch molecules. There was evidence, as indicated by confocal microscopy, of phase separation between the milk proteins of SMP and MPC and the two starches. The phase separation was not observed in the addition of either NaCAS or WPI. Studies on the thermal behaviour of rice starch/milk protein ingredient mixtures by differential scanning calorimetry (DSC) showed that SMP, similarly to UFSMP, delayed the gelatinization of both starches. NaCAS also delayed the gelatinisation of both starches but had a greater effect on waxy than normal rice starch. The addition of NaCAS did not affect Tonset but increased Tpeak for normal rice starch, whereas the gelatinisation temperature of waxy rice starch was highly affected by the addition of NaCAS with both Tonset and Tpeak shifted to higher temperatures. MPC had no affect on the gelatinization temperature of normal rice starch, whereas the gelatinization temperature of waxy rice starch was increased by the addition of MPC. The addition of WPI to both rice starches showed two thermal transitions. The first of these was due to the gelatinisation of the starches and the second to the denaturation of ß-lactoglobulin (ß-lg). The addition of WPI to normal rice starch showed that the thermal behaviour of normal starch and protein were independent from each other. In contrast, the thermal behaviour of waxy rice starch was modified by the addition of WPI; both Tonset and Tpeak were increased. SMP decreased the Tonset of swelling, swelling ratio and the amount of starch leaching from both starches. These observed changes were due to the presence of lactose and ions in SMP. NaCAS slightly increased Tonset of swelling but the amount of starch leaching was reduced for both rice starches. The rigidity of both starches tended to increase in the presence of NaCAS. MPC and WPI affected the swelling behaviour of normal and waxy rice starch differently. A dramatic increase in the swelling of normal rice starch/MPC or WPI mixtures was observed, whereas this trend was not evident for waxy rice starch/ MPC or WPI mixtures. The difference in the water holding ability and gelatinization peak temperatures of the two starches over the temperature range at which whey proteins denature and form gels are believed to be responsible for the observed differences. The results from confocal microscopy showed that milk proteins, such as a-casein, ß- casein, ß-lg and a-lactalbumin (a-la), were adsorbed onto the granule surface of both normal and waxy rice starch. The mechanism for this adsorption is the hydrophilic interactions; hydrogen bonds between hydroxyl group from terminated glucan molecule that protrude around starch granule surface-hydroxyl; amino, or other electron-donation or electron-accepting groups of the added proteins. Using sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) it was found that for SMP and MPC the adsorbed as- to ß-casein ratio on both starches was similar to the as-casein to ß- casein ratio in the casein micelle at low SMP and MPC concentrations. But at high concentrations of SMP or MPC, this ratio decreased indicating that more ß-casein was adsorbed preferentially to as-casein. In the case of NaCAS, as-casein was adsorbed preferentially to ß-casein. Moreover, there was evidence of multilayer adsorption of ascasein into the surface of rice starch granules. Compared to the other milk protein ingredients, very small amounts of the ß-lg and a-la from WPI were adsorbed onto starch granules. However, the adsorbed amounts of ß-lg and a-la from WPI continuously increased with increasing WPI concentration, suggesting that these two proteins, particularly ß-lg, adsorbed in multilayers too.
|
67 |
Determinação de parâmetros de qualidade de grãos associados ao comportamento culinário em arroz de terras altas / Grains associated quality parameters for determining the behavior in culinary land rice highFonseca, Raíza Cavalcante 29 September 2015 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-09-08T17:28:17Z
No. of bitstreams: 2
Dissertação - Raíza Cavalcante Fonseca - 2015.pdf: 1824882 bytes, checksum: 29667e889a40dc94517acb650bb67891 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-09T14:42:06Z (GMT) No. of bitstreams: 2
Dissertação - Raíza Cavalcante Fonseca - 2015.pdf: 1824882 bytes, checksum: 29667e889a40dc94517acb650bb67891 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-09-09T14:42:06Z (GMT). No. of bitstreams: 2
Dissertação - Raíza Cavalcante Fonseca - 2015.pdf: 1824882 bytes, checksum: 29667e889a40dc94517acb650bb67891 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2015-09-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The factors that control the rice cooking behavior are related to the physicochemical characteristics of the grain. The information of these traits is important to understanding the changes undergone by food during the cooking process. The objective of this work was to understand culinary behavior of upland rice genotypes with different levels of amylose through the characterization of physical, physicochemical, genetic and cooking quality of grain, as well as linking these factors to each other in order to point out reliable and reproducible indicators. We have analyzed eleven upland rice genotypes from the 2013 crop season at Embrapa Rice and Beans regarding the physical grain quality traits (head rice yield, grain size, percentage of chalk, milling degree), starch granule properties (morphology of the starch granules, swelling power, apparent amylose and absolute gelatinization temperature by alkaline dispersion, thermal properties by differential scanning calorimetry, pasting properties, the size distribution of amylopectin branched chains) and cooking quality (texture: hardness and stickiness of cooked grains (by cooking and instrumental tests) and of rice RVA gel). For genomic analysis, eight molecular markers associated to the cooking quality profile and described in the international literature were used. This study resulted in reliable and reproducible indicators of food quality for upland rice, to predict the culinary behavior profile were identified as key: the amylose content, gelatinization temperature, paste properties, instrumental texture properties and sensory of grains. In relation to validation markers for grain quality, it is concluded that the information derived from the analysis of association was possible to identify markers associated with cooking and technological attributes as well as to these favorable alleles. The final considerations involved in this study indicate that for different stages of breeding programs to launch on the market are cultivars of different analyzes displayed until the last assay which involves growing and use value. / Os fatores que controlam o comportamento culinário do arroz estão relacionados às características físico-químicas do grão. A informação dessas características é importante para a compreensão das modificações pelas quais passa o alimento durante o processo de cozimento. O objetivo deste trabalho foi compreender o comportamento culinário de genótipos de arroz de terras altas com diferentes teores de amilose por meio da caracterização dos parâmetros físicos, físico-químicos, genéticos e culinários da qualidade de grãos, bem como, associar esses fatores entre si de forma a apontar indicadores confiáveis. Foram analisados onze genótipos de plantio de terras altas provenientes da safra 2013 da Embrapa Arroz e Feijão quanto à qualidade física dos grãos (renda, rendimento, dimensão, porcentagem de gessados, grau de polimento), propriedades do grânulo de amido (morfologia dos grânulos de amido, poder de inchamento, teor de amilose aparente e absoluto, temperatura de gelatinização por dispersão alcalina, propriedades térmicas por calorimetria diferencial, propriedades de pasta, distribuição dos comprimentos de cadeias ramificadas da amilopectina) e qualidade culinária (textura: dureza e pegajosidade dos grãos cozidos (teste de cocção e instrumental) e do gel das pastas de arroz). Para a análise genômica, foram utilizados oito marcadores moleculares relacionados ao comportamento da qualidade culinária descritos na literatura internacional. Este estudo resultou em indicadores confiáveis e reprodutíveis da qualidade culinária para arroz de terras altas, para predizer o perfil de comportamento culinário foram apontados como principais: o teor de amilose, a temperatura de gelatinização, propriedades de pasta, propriedades de textura instrumental e sensorial dos grãos. Em relação à validação de marcadores para qualidade de grãos, conclui-se que a partir das informações derivadas da análise de associação foi possível a identificação de marcadores associados a atributos culinários e tecnológicos, assim como alelos favoráveis a estes. As considerações finais envolvidas neste estudo indicam que para diferentes etapas de programas de cruzamentos para o lançamento de cultivares no mercado são indicadas diferentes análises até o último ensaio que envolve o valor de cultivo e uso.
|
68 |
Protein composition-functionality relationships using novel genetic linesJonnala, Ramakanth S January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / Finlay I. MacRitchie / Novel genetic materials were used to deduce gluten protein composition-functionality relationships. The Pegaso bread wheat near-isogenic lines (NILs) included addition, variation and/or deletion of major loci coding for HMW-GS, LMW-GS and gliadins. The waxy wheat lines (Svevo and N11 set) included wild, partial and complete waxy lines. Triticale translocations include 1R.1D and 1A.1D lines (GDS7, Trim, Rhino and Rigel sets) with HMW-GS 5+10 and 2+12. The main goal of the study was to establish the usefulness of NILs as appropriate materials to investigate the structure-function relationships of wheat proteins and to evaluate the performance of unique triticale translocations and waxy wheat lines. Effect of genetic variation on phytochemical (phenolic acid and policosanol) contents was also studied. Innovative methods like MALLS, Lab-on-a-chip and micro (10 g) baking were utilized along with traditional analytical methods.
Results confirmed the potential of using NILs in understanding the effects of certain proteins coded at specific loci that might often be targeted in breeding programs. Removal of expected chain terminators at Gli-1/Gli-2 loci causes a shift in MWD to higher values, reflected in higher UPP and dough strength. Lines with HMW-GS 5+10 were clearly separated from 2+12 lines in terms of dough strength and UPP. The present study obtained evidence that modified ω-gliadins acts as chain terminators and cause reduction of protein polymer size and thus shifts in MWD. Marked differences in terms of milling characteristics, protein composition and ultimately in end-use functionality were observed with various waxy wheat null lines. Loaf volumes with waxy wheat flour alone were higher than a 50% blend with commercial wheat; however, breads were unacceptable to consumers in all aspects. Poor milling quality, very low mixing times with low bread loaf volumes were typical of all the triticales studied. However, translocation of the HMW-GS from wheat chromosome 1D increased dough strength, particularly the HMW-GS 5+10. Among the phytochemicals studied, double nulls at Gli-1 loci of Pegaso NILs had the highest total policosanols and total phenolic acid contents.Slight variation to wheat phenolic acid composition and contents were observed with waxy wheat and triticale lines.
|
69 |
Desarrollo y evaluación de nuevo germoplasma de maíz (Zea mays L.) para uso especial en ArgentinaCorcuera, Víctor Raúl 02 July 2012 (has links)
Entre los años 2000 a 2005 se realizaron ensayos en diferentes localidades de las provincias de Buenos Aires y Santa Fe y también se hicieron análisis de laboratorio que, en conjunto, permitieron estudiar y analizar la morfología, el comportamiento agronómico y las características químicas del grano de veintiocho nuevas líneas de endocría prolongada y doce híbridos simples derivados de ellas portadores de genes recesivos de interés comercial.
Las nuevas líneas endogámicas CIG y los híbridos simples HC se caracterizan por tener 121 a 15 hotas totales y hasta 2 espigas productivas por planta, revelando esto último un excelente comportamiento de los materiales bajo las condiciones de ensayo. Los híbridos simples sobresalen por su modera arquitectura, manifestada a través de una reducida altura de planta, altura de inservión de la espiga, menor número de hojas y dispuestas en forma erguida respecto al tallo. La prolificidad lograda en los materiales HC es similar a la de los mejores híbridos comerciales cultivados en Argentina.
Es destacable el alto grado de precocidad a floración femenina (R1) en los materiales desarrollados, ya que esta fase se alcanza tras acumular una suma térmica inferior a 680,0ºCdía en el 64,3% de las líneas endocriadas y 50% de los híbridos simples HC, por lo que estos materiales ultra precoces corresponden a las clases FAO 100 y 200. El resto de los genotipos necesita acumular 680,0ºC a 720,0 ºC-dia hasta la misma fase fenológica y son calificados como precoces (clase FAO 300-400). El nivel de precocidad de los híbridos HC facilitará su ciltivo en zonas de veranosw cortos y otoños húmedos, como por ejemplo la zona Pampeana Oeste y la Zona Pampeana Sur, así como realizar siembras tardías en la zona Pampeana Norte y en la Región Maicera VI.
Las nuevas líneas CIG producen desde 2.371,4 kg grano/ha hasta un máximo de 6.482,7 Kg. grano/ha, superando el umbral mínimo económico que cualquier línea endogámica debe alcanzar para ser empleada en la pr / Corcuera, VR. (2012). Desarrollo y evaluación de nuevo germoplasma de maíz (Zea mays L.) para uso especial en Argentina [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16382
|
70 |
An Experimental Study on the Effects of Heat and Chemical Inhibitors on the Flow Behaviour of Waxy Crude Oils. The Effects of Heat and Chemical Inhibitors on the Rheological Properties of Waxy Crude Oils with regard to Pumping in PipelinesMohamed, Fathia A.B. January 2019 (has links)
Waxy crude oils (1/3 of oil produced worldwide), pumping through
pipelines considered risky operation due to the crude wax content (15-40
wt.%) and to the temperature at which wax supersaturates and precipitates,
leading to the danger of pipe blockage, eventually resulting, in multimillion
dollars loss in production and maintenance.
This research undertaken to develop operational strategy of waxy crude
pipelines, considering the crude and crude gel properties and flow conditions.
The research problem was approached by characterizing the crude gel with
and without additives using chromatography (GC), differential scanning
calorimetry (DSC), cross polarised microscopy (CPM), controlled stress and
oscillatory shear rheology (CSR and OSR), the principal parameters being the
crude temperature and the rate at which the crude was cooled. GC and DSC
were useful in establishing wax composition, content and wax appearance
temperature (WAT). Control stress rheometer proved to be the most
appropriate as it measured the reduction in apparent viscosity at full production
(10-50 s-1 shear rate), near shutdown (1 s-1
) and yielding when the oil was
statically cooled. On this basis, it was established that the wax inhibitor was the most effective. CPM revealed that only the wax inhibitor changed the
structure of the gel, disrupting its otherwise knitted crystal network. Dilution
with the light crude oil merely reduced the wax content and the pour point
depressant reduced the gelling temperature. OSR provided a check on CSR
and confirmed the gelation temperature measured. CSR provided the yield
stress measured, it also provided comprehensive data that can be used for
theoretical modelling of this complex flow. / Libyan Petroleum Institute, Libya
|
Page generated in 0.0312 seconds