• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interpreting density enhancement of coronal mass ejections

Smith, Kellen January 2019 (has links)
Coronal mass ejections (CMEs) are some of the extraterrestrialevents most impactful to earth. Eorts to model and predict theireects have seen new possibilities in the two most recent decades dueto multiple new spacecrafts providing a wider range of data than everbefore. Models of these events suer from a number of inaccuracies,one of them being the density ratio between the CME and the ambientsolar wind. Since the arrival time for potentially harmful disturbancespredicted by models has been proved to be highly sensitive to thisparameter we therefore take care to set it as accurately as possible.Traditionally this value is either set to a default, justied by denitionand theory, or set to the density ratio between the bulk if the ejectedgas and the surrounding medium. A proposition has been made tomeasure density enhancement dierently, using a reference point at theshock wave preceding the CME for each event. This method strives toimprove arrival time predictions and was in this paper tested for onecoronal mass ejection event. Two runs if the model WSA-ENLIL+Conewas made; one with the default value of density enhancement, onewith a value determined through the revised method using coronographdata. Running the model with the revised value improved the predictedarrival time by moving it forwards in time by 4h, which was still tooearly. Other input data into the model run was then discussed as apossible cause of the remaining inaccuracy. / Koronamassutkastningar är ett av solfenomenen som påverkar jorden mest.Nya rymdfarkoster med instrument som satts i arbete de senaste två decenniernahar gett data som gjort det möjligt att modellera och förutse dessaevent till en högre precision än någonsin. Alla dessa modeller lider av någonform av felkälla, en av vilka är kvoten mellan densitet för massutkastningenoch den omgivande miljön. Eftersom förutsedda ankomsstider för potentielltskadliga störningar har visat sig vara särskilt känsliga för denna parameterså tar vi särskild hänsyn till att ange den så precist som möjligt. Vanligtvissätts detta värde till ett fast standardvärde, som anges av dess denitionoch bakomliggande teori, eller till kvoten mellan utkastningens bulk ochomgivningen. Ett förslag har dock lagts fram om att omdeniera parametern.Denna metod strävar efter att förbättra förutsedda ankomsttider ochhar i denna text testats för en koronamassutkastning. Två körningar avmodellen WSA-ENLIL+Cone gjordes; en med defaultvärdet för densitetsratiot,en med värdet satt genom mätning av empirisk cononagrafdata enligtden föreslagna metoden. Att köra modellen med den nya parametern förbättrade den förutsedda ankomsttiden genom att ytta den framåt i tidenmed 4 timmar, vilket fortfarande är för tidigt. Andra inputdata i modellendiskuterades då som möjliga orsaker till den återstående diskrepansen.
2

Comparison of the shock arrival times for Earth-directed ICMEs provided by the WSA-Enlil+Cone model and in-situ observations at L1: A Case Study

Werner, Anita Linnéa Elisabeth January 2016 (has links)
A case study which examines the agreement between prediction and data is performed for three, complex interplanetary shocks which were detected at the Sun-Earth Lagrange point L1 and induced moderate to intense geomagnetic storms. We use model output from previous runs of the coupled coronal-heliosphere WSA-Enlil+Cone model, available through the Community Coordinated Modeling Center (CCMC), and in-situ data from the OMNI data set. Code written in MATLAB is used to compare the model output with the in-situ measurements of the interplanetary magnetic field as well as the density, speed and temperature of the solar wind. In addition, the difference between the predicted and actual shock arrival time is computed and regions of potential temperature depression are identified. A considerable discrepancy is found between data and model for the studied events. The main reason is deemed to be an inadequate representation of the ambient solar wind as well as the complex interactions between interplanetary coronal mass ejections and corotating interaction regions. We suggest future steps to be taken for the further development of the model as well as for the general understanding of space weather and the Sun-Earth connection. / Denna fallstudie undersöker överensstämmelsen mellan modell och data för tre interplanetära chockvågor, som kunde detekteras vid jordens Lagrangepunkt 1, och som orsakade geomagnetiska stormar av måttlig till kraftig styrka. Vi använder oss av tidigare genomförda körningar av den sammansatta WSA-Enlil+Cone modellen, som avbildar fortplantningen av temporära störningar med ursprung i solens korona, såsom koronamassutkastningar, ut i heliosfären. Modellen gjordes tillgänglig av Community Coordinated Modeling Center (CCMC) och datan inhämtades från OMNI. Kod skriven i MATLAB nyttjades för att göra en jämförelse mellan modell och faktiska mätningar av det interplanetära magnetfältet samt solvindens hastighet, densitet och temperatur. Utöver detta, beräknas också skillnaden mellan förväntad och faktisk ankomsttid av respektive interplanetär chock, och tidsperioder med en temperatursänkning utöver det normala identifieras. Vi finner en omfattande avvikelse mellan modell och data, i synnerhet för de fall där på varandra följande koronamassutkastningar förväntas interagera eller rent av slås ihop samt för uppskattningen av den omgivande solvindens egenskaper och det interplanetära fältet under pågående geomagnetisk störning. Interaktionen mellan koronamassutkastningar och närliggande ko-roterande interaktionsregioner har ej heller återskapats väl av modellen ifråga. Slutligen ger vi förslag på möjliga, framtida åtgärder som kan bör tas i åtanke vid konstruerandet av framtida versioner av nämnda modell, liksom för den allmänna förståelsen för rymdvädrets inverkan på Jorden.
3

Modeling the complex ejecta on 2017 September 6-9 with WSA-ENLIL+Cone and EUHFORIA

Werner, Anita Linnéa Elisabeth January 2018 (has links)
Three CMEs which erupted on 2017 Sep 4 and 6 underwent mutual interaction before reaching Earth on Sep 6-9, where it gave rise to a complex and unexpectedly geoeffective structure as detected by WIND at L1. The spacecraft first observed an interplanetary (IP) shock on Sep 6 followed by a turbulent sheath. The leg of the CME flux rope is detected on Sep 7, in which clear signatures of a shock-in-a-cloud can be distinguished, coming from the third CME which propagated into the preceding flux rope. We model the source of this complex ejecta with WSA-ENLIL+Cone and EUHFORIA to assess and compare the overall performance for interacting CMEs as opposed to single CME events. We find that following the conventional algorithm for determination of input parameters give large deviation in the event prediction at L1. The overestimated density of the IP shock 1 is due to the way of implementation of the magnetogram in WSA model. Excluding the slow CME from the input leads to even larger deviation. The prediction of IP shock 1 drastically improves by introducing of a customized density enhancement factor (dcld) based on coronagraph image observations. This novel approach, is simple and accessible, and could be applied to improve the forecast for fast, undisturbed CMEs. The deviation in the prediction of IP shock 2 comes from its interaction with the low proton temperature environment of the preceding magnetic cloud, giving rise to an expansion of the shock front. Additionally, the properties of the background solar wind plasma have been preconditioned by passage of the previous IP shock. This was confirmed from the kilometric type II radio burst emission following the eruption of the third CME. The propagation profile of this CME implies an almost non-existent deceleration in the interplanetary medium, in contrast to the expected CME deceleration due to interaction with the background plasma. In summary, this study presents clear indications that magnetic interaction must be taken into account to reliably forecast multiple CME events. Preconditioning of previous CMEs must also be considered in more depth, and ultimately requires a realistic, time-dependent model of the ambient solar wind which responds well to propagating shock waves. Models in space physics presents us with the perfect tools for understanding not only the physical processes that the simplified models can predict, but perhaps more importantly, help us begin to understand what the models fail to predict.

Page generated in 0.0393 seconds