• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In silico study of blood flow as biomechanical determinant of plaque formation and localization / Προσομοίωση αιματικής ροής για τον προσδιορισμό σημείων αθηρωμάτωσης με τη βοήθεια δεικτών αιμοδυναμικής φύσης

Ζωγόγιαννη, Φρειδερίκη 16 May 2014 (has links)
Our study was designed to test the hypothesis that flowfield properties such as WSS are closely related to cardiovascular disease. The spatial distribution patterns of several hemodynamic indices (gradient of WSS) were examined and compared with the (known) locations of plaque formation in human aorta. The part of the aorta on which we focused is ascending, aortic arch and descending aorta. Blood flow is influenced by vessel wall motion. Fluid Structure Interaction (FSI) is also investigated and discussed during the description of hemodynamic environment that leads to plaque formation in human aorta. Our Data were DICOM files from Computed Tomography (CT) scans. Using Vascular Modeling Toolkit (VMTK) and these scans as the input, we choose level set segmentation method to extract the geometry of the vessel needed for the simulation. ANSYS CFX Solver was used for the simulation of blood flow. The present numerical study revealed a direct correlation between low WSS values and atherosclerotic plaque localization. The results indicate also that Oscillating Shear Index (OSI) shows clearly points where the possibility of atherogenesis is high enough to be ignored. FSI provides unimportant details when we focused on plaque formation. / Η παρούσα εργασία μελετά την υπόθεση που συνδέει τις ιδιότητες του πεδίου ροής, όπως οι διατμητικές τάσεις (Wall Shear Stresses), με καρδιαγγειακές παθήσεις. Η χωρική κατανομή διάφορων δεικτών αιμοδυναμικής φύσεως (όπως η βάθμωση των διατμητικών τάσεων) μελετήθηκε και τα σημεία που εντοπίστηκαν ως ύποπτα για την ανάπτυξη αθηρωματικών πλακών συγκρίθηκαν με γνωστές από τη βιβλιογραφία περιοχές σχηματισμού τέτοιων φλεγμονών στην ανθρώπινη αορτή. Το τμήμα της αορτής στο οποίο εστιάσαμε είναι η ανιούσα, το αορτικό τόξο και η κατιούσα αορτή. Εξετάστηκε απίσης το ενδεχόμενο να επηρεάζεται η ροή του αίματος από την κίνηση του αρτηριακού τοιχώματος.
2

Laminar and Transitional Flow disturbances in Diseased and Stented Arteries

Karri, Satyaprakash Babu 30 September 2009 (has links)
Cardiovascular diseases (CVD) are the number one causes of death in the world. According to the world Health Organization (WHO) 17.5 million people died from cardiovascular disease in 2005, representing 30 % of all global deaths . Of these deaths, 7.6 million were due to heart attacks and 5.7 million due to stroke. If current trends are allowed to continue, by 2015 an estimated 20 million people will die annually from cardiovascular disease. The trends are similar in the United States where on an average 1 person dies every 37 seconds due to CVD. In 2008 an estimated 770,000 Americans will experience a new heart attack (coronary stenosis) and 600,000 will experience a first stroke. Although the exact causes of cardiovascular disease are not well understood, hemodynamics has been long thought to play a primary role in the progression of cardiovascular disease and stroke. There is strong evidence linking the fluid mechanical forces to the transduction mechanisms that trigger biochemical response leading to atherosclerosis or plaque formation. It is hypothesized that the emergence of abnormal fluid mechanical stresses which dictate the cell mechanotransduction mechanisms and lead to disease progression is dependent on the geometry and compliance of arteries, and pulsatility of blood flow. Understanding of such hemodynamic regulation in relation to atherosclerosis is of significant clinical importance in the prediction and progression of heart disease as well as design of prosthetic devices such as stents. The current work will systematically study the effects of compliance and complex geometry and the resulting fluid mechanical forces. The objective of this work is to understand the relationship of fluid mechanics and disease conditions using both experimental and computational methods where (a) Compliance effects are studied in idealized stenosed coronary and peripheral arteries using Digital Particle Image Velocimetry (DPIV), (b) Complex geometric effects of stented arteries with emphasis on its design parameters is investigated using CFD, Also (c) a novel method to improve the accuracy of velocity gradient estimation in the presence of noisy flow fields such as in DPIV where noise is inherently present is introduced with the objective to improve accuracy in the estimation of WSS, which are of paramount hemodynamic importance. The broad impact of the current work extends to the understanding of fundamental physics associated with arterial disease progression which can lead to better design of prosthetic devices, and also to better disease diagnostics. / Ph. D.

Page generated in 0.1126 seconds