• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a dna vaccine against _streptococcus mutans_: A novel approach to immunization against dental caries

Han, Thomas 01 June 2005 (has links)
Streptococcus mutans is the main causative agent of dental caries, which is a widespread infectious disease. A number of surface molecules are involved in the pathogenicity of this organism, including adherence and aggregation factors. The wall-associated protein A (WapA) of Streptococcus mutans GS-5 was previously demonstrated to be a sucrose-dependent adherence and aggregation factor, and is a larger precursor to extracellular antigen A (AgA), a candidate antigen for a dental caries vaccine.The full-length wapA gene and a C-terminal truncated version agA encoding the AgA were cloned into the mammalian expression vector pcDNA 3.1/V5/His-TOPO. The above constructs were mixed with a cationic lipid and used to transfect Chinese hamster ovary (CHO) cells. Transient expression of the wapA and agA genes was observed at 24 h post-transfection, as shown by Western immunoblot analysis. In CHO, cells WapA containing the membrane and wall-spanning region was found in apoptotic bodies, whereas the soluble AgA, which lacked the hydrophobic region, was found in extracellular medium. A higher salivary IgA level was observed in mice immunized with the pcDNA-wapA vaccine as compared to those immunized with the pcDNA-agA vaccine. Furthermore, the anti-WapA antibody inhibited S. mutans sucrose-dependent adherence, suggesting potential protection of the tooth against S. mutans colonization, while anti-AgA had no significant effect. Indeed, prediction and analysis of protein epitopes showed that WapA contains highly promiscuous MHC-II binding motifs that are absent from AgA. Immunodot assay confirmed that WapA bound biotin-labeled dextran, whereas AgA did not.
2

Produkce toxinů bakterií Bacillus subtilis a jejich role v konkurenčním boji s dalšími bakteriemi / Production of toxins by Bacillus subtilis and their roles in interspecies competitions.

Šureková, Kristína January 2021 (has links)
Bacillus subtilis is a gram positive soil bacterium that is surrounded by many other microorganisms its environment. That is why it is necessary for the bacterium to be able to fight with these microorganisms for the nutrients and living space. B. subtilis contains the modules in its genetic make-up that improve its ability to compete. These modules are called the toxin-antitoxin systems. This Diploma Thesis is trying to identify yet undescribed extracellular toxins produced by the wild type BSB1 strain of B. subtilis. The related microorganism Bacillus megaterium was used as a competing bacterium. The contact-dependent or independent manner of killing the competing bacterium was demonstrated using this model. By deletion analysis and comparisons of the genomes of the various strains of B. subtilis, the SPβ prophage was first identified as a region containing an unknown toxin(s). Analysis of the extracellular proteome of B. subtilis subsequently revealed an unknown toxin (or toxin complex, respectively) of the molecular weight exceeding 100 kDa. Even more fascinating was the finding that such a large protein molecule is resistant to the pancreatic protease, trypsin. Subsequent non-enzymatic cyanogen bromide cleavage of the extracellular proteins and their analysis by mass spectrometry revealed...

Page generated in 0.0302 seconds