• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic stratigraphy and sediment partitioning of high-supply fluvial succession in Maastrichtian source-to-sink system

Ned, Allison Marie 30 October 2013 (has links)
The sediment budget and paleogeography was reconstructed for the Maastrichtian fluvial to coastal plain Lance Formation (>200m thick) that developed coevally with the shoreline/shelf Fox Hills Sandstone (>200m thick) and deep-water Lewis Shale (>750m thick) in a complete source-to-sink system in the Washakie and Great Divide Basins of south central Wyoming. The system initiated during the final Western Interior Seaway (WIS) transgression and the onset of the Laramide Orogeny rapid subsidence (>2km in 1.9 My) that largely outpaced sediment flux into the basin so the system became and remained a deep-water (>500m water depth) basin beyond the Lance-Fox Hills shelf prism. The active tectonic setting and rapid subsidence caused the Lance fluvial and coastal plain deposits to aggrade and accumulate behind the generally rising shoreline trajectory of the Fox Hills Sandstone. The depositional succession is subdivided into 15 clinothem units and the Lance Formation is best exposed in outcrops in clinoforms 10, 11, and 12. Subsurface analysis correlates key stratigraphic surfaces across the basin to define the sediment budget and clinoform architecture. Field analysis along clinoform 12 on the east side of the basin details facies and paleohydraulic dimensions. Sediment partitioning shows the regressive and transgressive systems tracts (RST and TST) form complementary wedges such that the RST thickens basinward and the TST thins basinward, reflecting the preferential storage of sediment. Channels measured in the field and subsurface datasets are similar in thickness (2m-16m) and suggest braided channel morphology with channel belts from 6.2-8.4km. N/NE paleocurrent trends departing from the subsurface dataset and previous studies of the system provide evidence of possible tidal influences in a developed shoreline embayment or an east to west supply from the basement-cored Rawlins and Sierra Madre Uplifts in the east. The fluvial Lance Formation paleogeography associated with the RST and TST is primarily driven both by modest, Late Cretaceous relative sea level changes and sediment supply linked to the tectonic setting and climate. / text
2

Building a Predictive Model for Stratigraphic Transitions and Lateral Facies Changes in the Cretaceous Almond Formation, Wyoming

Phillips, Joseph E. 07 December 2020 (has links)
The Cretaceous Almond Formation, located in the Greater Green River Basin, records deposition of coastal plain fluvial sandstones and shallow marginal-marine sandstones in a net-transgressive sequence along the western margin of the Cretaceous Interior Seaway (CIS) from the late Campanian to early Maastrichtian. The Almond Formation is an important hydrocarbon reservoir, with development mainly along the Wamsutter Arch and the northeast margins of the Washakie Basin. Previous studies have primarily focused on outcrops along the eastern flank of the Rock Springs Uplift and subsurface data targeting the Wamsutter Arch. Further development of the Almond petroleum system requires extending our understanding of lateral facies changes and sequence stratigraphic architecture away from areas that have been previously studied. The aim of this research is to build a predictive model of lateral and temporal facies transitions and associated reservoir character along the Cherokee Arch in southern Wyoming. This structural feature marks the southern margin of the Washakie Basin and is roughly perpendicular to the shoreline of the CIS. Outcrop examination at either end of the arch shows that lower Almond strata along the western margin of the Washakie Basin transition from coastal plain facies associations to time-equivalent shallow-marine strata to the east, while the upper Almond strata transition from shallow-marine sands to offshore and prodeltaic muds across the ~125 km separating the two outcrop localities. This reveals clear facies associations shifts at the basin scale, which are difficult to interpret using only well data. The preservation of shoreface strata and related near-shore, fluvio-deltaics across large distances in the dip direction shows the large magnitude of shoreline migration. This also suggests that the system gradient was likely very gentle, leading to wide facies belts, and that reservoir continuity could be complex over significant distances. Stacking patterns observed in outcrop, core, and log curves demonstrate an early progradational sequence across the basin from the west to east. This time equivalent strata suggests sediment supply outpaced accommodation during deposition of the lower Almond and equivalent basinward strata, leading to progradation and eventually to some aggradation before relative sea-level rose. This is significant as the Almond is thought primarily as an overall retrogradational system. Within the upper Almond and basinward equivalent strata, stacking patterns reveal a well preserved retrogradational sequence as accommodation outpaced sediment supply during the final transgression of the Mesaverde Group. Core and outcrop analysis to the east at this time show facies associations that potentially represent an inundated, estuarine deltaic environment of deposition transitioning to deltaic depofacies to the west. Clinoformal geometry and an additional sand found in the subsurface of a cluster of only southern wells corroborate a deltaic interpretation. This sand is interpreted as a lobate deposit flanked by shale to the north. Shorelines span a short distance in the east and a much broader distance to the west with a clear facies shift in between allowing for marine shale to directly overlay coastal plain facies. Outcrop, core, and subsurface datasets have led to a better understanding of sediment partitioning and preservation during this transgressive phase of the CIS in the western United States. A better understanding of these spatial and temporal patterns will help to remove risk associated with exploration along this trend, as well as serve as an analogue for other transgressive deposits. Additional data would increase knowledge of this system and lead to solidification of new ideas presented for the Almond Formation along the Cherokee Arch.

Page generated in 0.0398 seconds