• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Building a Predictive Model for Stratigraphic Transitions and Lateral Facies Changes in the Cretaceous Almond Formation, Wyoming

Phillips, Joseph E. 07 December 2020 (has links)
The Cretaceous Almond Formation, located in the Greater Green River Basin, records deposition of coastal plain fluvial sandstones and shallow marginal-marine sandstones in a net-transgressive sequence along the western margin of the Cretaceous Interior Seaway (CIS) from the late Campanian to early Maastrichtian. The Almond Formation is an important hydrocarbon reservoir, with development mainly along the Wamsutter Arch and the northeast margins of the Washakie Basin. Previous studies have primarily focused on outcrops along the eastern flank of the Rock Springs Uplift and subsurface data targeting the Wamsutter Arch. Further development of the Almond petroleum system requires extending our understanding of lateral facies changes and sequence stratigraphic architecture away from areas that have been previously studied. The aim of this research is to build a predictive model of lateral and temporal facies transitions and associated reservoir character along the Cherokee Arch in southern Wyoming. This structural feature marks the southern margin of the Washakie Basin and is roughly perpendicular to the shoreline of the CIS. Outcrop examination at either end of the arch shows that lower Almond strata along the western margin of the Washakie Basin transition from coastal plain facies associations to time-equivalent shallow-marine strata to the east, while the upper Almond strata transition from shallow-marine sands to offshore and prodeltaic muds across the ~125 km separating the two outcrop localities. This reveals clear facies associations shifts at the basin scale, which are difficult to interpret using only well data. The preservation of shoreface strata and related near-shore, fluvio-deltaics across large distances in the dip direction shows the large magnitude of shoreline migration. This also suggests that the system gradient was likely very gentle, leading to wide facies belts, and that reservoir continuity could be complex over significant distances. Stacking patterns observed in outcrop, core, and log curves demonstrate an early progradational sequence across the basin from the west to east. This time equivalent strata suggests sediment supply outpaced accommodation during deposition of the lower Almond and equivalent basinward strata, leading to progradation and eventually to some aggradation before relative sea-level rose. This is significant as the Almond is thought primarily as an overall retrogradational system. Within the upper Almond and basinward equivalent strata, stacking patterns reveal a well preserved retrogradational sequence as accommodation outpaced sediment supply during the final transgression of the Mesaverde Group. Core and outcrop analysis to the east at this time show facies associations that potentially represent an inundated, estuarine deltaic environment of deposition transitioning to deltaic depofacies to the west. Clinoformal geometry and an additional sand found in the subsurface of a cluster of only southern wells corroborate a deltaic interpretation. This sand is interpreted as a lobate deposit flanked by shale to the north. Shorelines span a short distance in the east and a much broader distance to the west with a clear facies shift in between allowing for marine shale to directly overlay coastal plain facies. Outcrop, core, and subsurface datasets have led to a better understanding of sediment partitioning and preservation during this transgressive phase of the CIS in the western United States. A better understanding of these spatial and temporal patterns will help to remove risk associated with exploration along this trend, as well as serve as an analogue for other transgressive deposits. Additional data would increase knowledge of this system and lead to solidification of new ideas presented for the Almond Formation along the Cherokee Arch.
2

Discriminant Analysis of XRF Data from Sandstones of Like Facies and Appearance: A Method for Identifying a Regional Unconformity, Paleotopography,and Diagenetic Histories

Phillips, Stephen Paul 29 September 2012 (has links) (PDF)
The placement of an unconformable surface within a stratal succession affects the interpreted thickness of units and sequences in contact with that surface. Unit thickness influences the interpretation of basin subsidence, paleotopography, diagenesis, and depositional style. Accurate placement of an unconformity results in true formational thicknesses for formations associated with that unconformity. True thicknesses aid in producing more precise surface to subsurface correlations, isopach maps, and paleogeographic maps. An unconformity may be difficult to identify in the stratal succession due to similar rocks above and below the unconformity and the presence of multiple candidate surfaces. Using statistical discriminant analysis of XRF data, formations bounding an unconformity can be discriminated by elemental composition which results in delineation of the associated unconformity. This discrimination is possible even for rocks that do not have significant differences in provenance if they have experienced distinct diagenetic histories. Elemental differences can be explained by quantity and type of cement. Three discriminant models were created. These models were tested with samples from three formations of similar facies, appearance, and provenance that are all associated with the same regional unconformity. All data, regardless of location, facies, or tectonic feature were used to create the first model. This model achieved moderate success by correctly classifying 80% of known samples. In a second model, data were grouped by facies trends. Separating the data by facies resulted in 94% of known samples being correctly classified. This model was most useful for delineation of an unconformity and discrimination of formations. A third model based solely on location or local tectonic feature produced the best results statistically. 96% of known samples were classified correctly. This third model does not compare locations to each other, thus making it less robust. This last model contributes by adding detail to interpretations made with the facies trend model.
3

Facies and Reservoir Characterization of the Permian White Rim Sandstone, Black Box Dolomite, and Black Dragon Member of the Triassic Moenkopi Formation for CO2 Storage and Sequestration at Woodside Field, East-Central Utah

Harston, Walter Andrew 18 April 2013 (has links) (PDF)
Geologic sequestration of anthropogenic carbon dioxide (CO2) greenhouse gas emissions is an engineering solution that potentially reduces CO2 emissions released into the atmosphere thereby limiting their effect on climate change. This study focuses on Woodside field as a potential storage and sequestration site for CO2 emissions. The Woodside field is positioned on a doubly plunging, asymmetrical anticline on the northeast flank of the San Rafael Swell. Particular focus will be placed on the Permian White Rim Sandstone, Black Box Dolomite and Black Dragon Member of the Triassic Moenkopi Formation as the reservoir/seal system to store and sequester CO2 at Woodside field. The White Rim Sandstone, the primary target reservoir, is divided into three stratigraphic intervals based on facies analysis: a lower sand sheet facies (about 60 ft or 18 m), a thick middle eolian sandstone facies (about 390 ft or 119 m), and an upper marine reworked facies (about 70 ft or 21 m). Porosity and permeability analyses from the outcrop indicate good reservoir quality in the eolian sandstone and reworked facies. Porosity in the White Rim Sandstone ranges from 7.6 to 24.1% and permeability reaches up to 2.1 D. The maximum combined thickness of the three facies is 525 ft (160 m) at Woodside field providing a significant volume of porous and permeable rock in which to store CO2. The Black Box Dolomite is the secondary potential reservoir for CO2 storage at Woodside field and has a gross thickness up to 76 ft (23 m). The Black Box Dolomite is divided into four lithofacies: a basal nodular dolomudstone (8.2 -15 ft or 3.5-4.5 m), a dolowackestone (25-37 ft or 7.5-11 m), a dolomitic sandstone (0-8.2 ft or 0-2.5 m), and an upper sandy dolowackestone (0-16 ft or 0-4.9 m). Porosity and permeability analyses indicate reservoir potential in the dolowackestone, dolomitic sandstone, and sandy dolowackestone lithofacies. Porosity in the Black Box Dolomite ranges from 6.6 to 29.2% and permeability reaches up to 358 mD. The nodular dolomudstone lithofacies has relatively poor reservoir quality with porosity up to 9.4% and permeability up to 0.182 mD. This lithofacies could act as a baffle or barrier to fluid communication between the White Rim Sandstone and Black Box Dolomite. The Black Dragon Member of the Triassic Moenkopi Formation will serve as the seal rock for the relatively buoyant CO2 stored in the underlying formations. The Black Dragon Member is comprised of four lithofacies: a chert pebble conglomerate; an interbedded sandstone, siltstone, and shale; a trough cross-stratified sandstone, and an oolitic and algal limestone. The Black Dragon Member has a maximum thickness of 280 ft (85 m) at Woodside field. Mudstone beds contain from 0.16 to 0.47% porosity. QEMSCAN analysis indicates several minerals within shale beds that may react with a CO2-rich brine including calcite (18.73 to 23.43%), dolomite (7.56 to 7.89%), alkali feldspar (4.12 to 4.43 %), glauconite (0.04 to 0.05%), and plagioclase (0.03 to 0.04%). Silty mudstones comprise 75% of this member at Black Dragon Canyon. Volumetric estimates for Woodside field were calculated based on the 10th, 50th, and 90th percent probabilities (P10, P50, and P90). The White Rim Sandstone is the primary target reservoir and has capacity to hold 2.2, 8.8, or 23.7 million metric tonnes (P10, P50, and P90 respectively) of CO2 within the structural closure of Woodside field. The Black Box Dolomite may hold 0.5, 1.8, or 4.5 million metric tonnes, respectively of additional CO2 within the structural closure of Woodside field. These two formations combined have the capacity to store up to 28.3 million metric tonnes (P90) of CO2.

Page generated in 0.1121 seconds