Spelling suggestions: "subject:"wasserstein generative adversarial ..."" "subject:"wasserstein generative adversarialt ...""
1 |
Scenario Generation for Stress Testing Using Generative Adversarial Networks : Deep Learning Approach to Generate Extreme but Plausible ScenariosGustafsson, Jonas, Jonsson, Conrad January 2023 (has links)
Central Clearing Counterparties play a crucial role in financial markets, requiring robust risk management practices to ensure operational stability. A growing emphasis on risk analysis and stress testing from regulators has led to the need for sophisticated tools that can model extreme but plausible market scenarios. This thesis presents a method leveraging Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP) to construct an independent scenario generator capable of modeling and generating return distributions for financial markets. The developed method utilizes two primary components: the WGAN-GP model and a novel scenario selection strategy. The WGAN-GP model approximates the multivariate return distribution of stocks, generating plausible return scenarios. The scenario selection strategy employs lower and upper bounds on Euclidean distance calculated from the return vector to identify, and select, extreme scenarios suitable for stress testing clearing members' portfolios. This approach enables the extraction of extreme yet plausible returns. This method was evaluated using 25 years of historical stock return data from the S&P 500. Results demonstrate that the WGAN-GP model effectively approximates the multivariate return distribution of several stocks, facilitating the generation of new plausible returns. However, the model requires extensive training to fully capture the tails of the distribution. The Euclidean distance-based scenario selection strategy shows promise in identifying extreme scenarios, with the generated scenarios demonstrating comparable portfolio impact to historical scenarios. These results suggest that the proposed method offers valuable tools for Central Clearing Counterparties to enhance their risk management. / Centrala motparter spelar en avgörande roll i dagens finansmarknad, vilket innebär att robusta riskhanteringsrutiner är nödvändiga för att säkerställa operativ stabilitet. Ökande regulatoriskt tryck för riskanalys och stresstestning från tillsynsmyndigheter har lett till behovet av avancerade verktyg som kan modellera extrema men troliga marknadsscenarier. I denna uppsats presenteras en metod som använder Wasserstein Generative Adversarial Networks med Gradient Penalty (WGAN-GP) för att skapa en oberoende scenariogenerator som kan modellera och generera avkastningsfördelningar för finansmarknader. Den framtagna metoden består av två huvudkomponenter: WGAN-GP-modellen och en scenariourvalstrategi. WGAN-GP-modellen approximerar den multivariata avkastningsfördelningen för aktier och genererar möjliga avkastningsscenarier. Urvalsstrategin för scenarier använder nedre och övre gränser för euklidiskt avstånd, beräknat från avkastningsvektorn, för att identifiera och välja extrema scenarier som kan användas för att stresstesta clearingmedlemmars portföljer. Denna strategi gör det möjligt att erhålla nya extrema men troliga avkastningar. Metoden utvärderas med 25 års historisk aktieavkastningsdata från S&P 500. Resultaten visar att WGAN-GP-modellen effektivt kan approximera den multivariata avkastningsfördelningen för flera aktier och därmed generera nya möjliga avkastningar. Modellen kan dock kräva en omfattande mängd träningscykler (epochs) för att fullt ut fånga fördelningens svansar. Scenariurvalet baserat på euklidiskt avstånd visade lovande resultat som ett urvalskriterium för extrema scenarier. De genererade scenarierna visar en jämförbar påverkan på portföljer i förhållande till de historiska scenarierna. Dessa resultat tyder på att den föreslagna metoden kan erbjuda värdefulla verktyg för centrala motparter att förbättra sin riskhantering.
|
2 |
Synthetic Data Augmentation for Simulating Cyberattacks on Power Transmission Systems Using WGANsSpoorthy Reddy Gondhi (20416535) 11 December 2024 (has links)
<p dir="ltr">The integration of diverse infrastructures in modern-day power systems facilitates unauthorized access and data manipulation by adversaries, as these systems heavily rely on Information and Communication Technology (ICT) for monitoring and control. A significant challenge within these power networks is the risk of operational disruptions, such as congestion and voltage instability, resulting from stealthy false data injection (FDI) cyberattacks. Different from the existing work, this paper proposes a solution by introducing a defense framework that utilizes a Wasserstein Generative Adversarial Network (WGAN) to generate synthetic data. This synthetic data closely resembles the output from actual Phasor Measurement Units (PMU) and is developed by training the WGAN with extensive real PMU datasets. Additionally, mixing synthetic and real data when sending it to the Supervisory Control and Data Acquisition (SCADA) system adds layers of complexity and obscures the data landscape for attackers, thereby hindering their ability to detect vulnerabilities and anomalies.</p>
|
3 |
Towards Representation Learning for Robust Network Intrusion Detection SystemsRyan John Hosler (18369510) 03 June 2024 (has links)
<p dir="ltr">This research involves numerous network intrusion techniques through novel applications of graph representation learning and image representation learning. The methods are tested on multiple publicly available network flow datasets.</p>
|
Page generated in 0.1246 seconds