• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-Parallel Voice Conversion / Non-Parallel Voice Conversion

Brukner, Jan January 2020 (has links)
Cílem konverze hlasu (voice conversion, VC) je převést hlas zdrojového řečníka na hlas cílového řečníka. Technika je populární je u vtipných internetových videí, ale má také řadu seriózních využití, jako je dabování audiovizuálního materiálu a anonymizace hlasu (například pro ochranu svědků). Vzhledem k tomu, že může sloužit pro spoofing systémů identifikace hlasu, je také důležitým nástrojem pro vývoj detektorů spoofingu a protiopatření.    Modely VC byly dříve trénovány převážně na paralelních (tj. dva řečníci čtou stejný text) a na vysoce kvalitních audio materiálech. Cílem této práce bylo prozkoumat vývoj VC na neparalelních datech a na signálech nízké kvality, zejména z veřejně dostupné databáze VoxCeleb. Práce vychází z moderní architektury AutoVC definované Qianem et al. Je založena na neurálních autoenkodérech, jejichž cílem je oddělit informace o obsahu a řečníkovi do samostatných nízkodimenzionýálních vektorových reprezentací (embeddingů). Cílová řeč se potom získá nahrazením embeddingu zdrojového řečníka embeddingem cílového řečníka. Qianova architektura byla vylepšena pro zpracování audio nízké kvality experimentováním s různými embeddingy řečníků (d-vektory vs. x-vektory), zavedením klasifikátoru řečníka z obsahových embeddingů v adversariálním schématu trénování neuronových sítí a laděním velikosti obsahového embeddingu tak, že jsme definovali informační bottle-neck v příslušné neuronové síti. Definovali jsme také další adversariální architekturu, která porovnává původní obsahové embeddingy s embeddingy získanými ze zkonvertované řeči. Výsledky experimentů prokazují, že neparalelní VC na nekvalitních datech je skutečně možná. Výsledná audia nebyla tak kvalitní případě hi fi vstupů, ale výsledky ověření řečníků po spoofingu výsledným systémem jasně ukázaly posun hlasových charakteristik směrem k cílovým řečníkům.
2

Towards Representation Learning for Robust Network Intrusion Detection Systems

Ryan John Hosler (18369510) 03 June 2024 (has links)
<p dir="ltr">This research involves numerous network intrusion techniques through novel applications of graph representation learning and image representation learning. The methods are tested on multiple publicly available network flow datasets.</p>

Page generated in 0.0916 seconds