• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 420
  • 113
  • 55
  • 31
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 9
  • 7
  • 4
  • 3
  • 2
  • Tagged with
  • 858
  • 858
  • 178
  • 159
  • 155
  • 122
  • 108
  • 99
  • 96
  • 93
  • 93
  • 93
  • 91
  • 89
  • 87
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Characterizing the Municipal Solid Waste Stream in Denton, Texas

Brady, Patricia D. 08 1900 (has links)
Forty-two commercially collected dumpsters from Denton’s Municipal Solid Waste Stream were emptied, sorted and weighed to characterize the material types and make preliminary recycling policy recommendations. The general composition of Denton’s solid waste stream was not significantly different from the composition of the nation’s solid waste stream. Fifty-eight percent of the observed waste stream was recyclable. Paper made up the largest portion of recyclable materials and the "grocery" source category had more paper than any of the other five categories. Based on these findings, an incrementally aggressive approach is recommended to reduce certain types of wastes observed in the waste stream. This would include a Pay-As-You-Throw Program followed by an Intermediate Processing Center that can be converted to a Materials Recovery Facility.
392

Influence of landfill leachate on growth response and mineral content of Swiss chard

Abdulmalek, Mohamed Milad January 2014 (has links)
Thesis (MTech (Agriculture))--Cape Peninsula University of Technology, 2014. / In this study, laboratory and greenhouse experiments were conducted to evaluate the effects of utilization of land fill leachate for irrigation purposes on potted soil and Swiss chard, to provide more insight into effects of landfill leachates on the environment. Swiss chard was grown and irrigated with different concentrations of leachates in pot experiments. For several weeks, the experimental soil and Swiss chard leaves was analyzed to assess extent of change in different chemical compositions, post-irrigation. The leachate samples had a high electrical conductivity (mean = 383 mS cm-1) and high soluble salts content (mean values, Na = 714.5 mg/L, K= 56.8 mg/L, Ca = 133.7 mg/L, Mg = 68.8 mg/L, Cl = 983 mg/L); while the composition of heavy metals in these wastewater leachates were of low concentrations. The application of leachates in irrigation resulted in increased soil cation concentrations, particularly those of Na ions (increased sodicity). Similarly, an increase in electrical conductivity and pH were recorded in the soils after irrigation with leachates. The soil metal concentrations were low and there was no significant difference in soil heavy metal concentrations between the soils irrigated with leachate and those of the controls. The results also show significant (p <0.05) reduction (up to 50%) in Swiss chard growth with application of (100%, 50% and 25%) of leachate as source of irrigation water compared to the growth observed in leachate-free (control) irrigation systems. This reduction in growth was best attributed to the high cation content in plant tissue picked up from the soil which was high in cations as a result of leachate irrigation.
393

Effect of chemical oxygen demand on the ability of some cover crops to prevent mineral accumulation in a sandy vineyard soil irrigated with augmented winery wastewater

Ochse, Charles Henry January 2015 (has links)
Thesis (MTech (Agriculture))--Cape Peninsula University of Technology. / During the past years government regulations concerning winery effluent became stricter to protect the environment. Wineries are continually improving wastewater management and finding appropriate ways to reduce cellar effluent. Due to water scarcity in South Africa, it could be a huge advantage if winery effluent could be used as irrigation water for vineyards. If the industry can re-use the untreated wastewater, it will not only save a huge amount of irrigation water, but it will also be able to get rid of the vast amount of cellar effluent. Grape production plays a major role in agriculture worldwide. The world production of grapes worldwide in 2013 was 751 MgL. South Africa is the 9th biggest wine producer in the world with 10 X 10HL of wine. In the earlier years of wine production in South Africa, the small volumes of winery wastewater did not have a negative impact on the environment but with the increased volumes over the last years, the possibility of contamination of the soil and the environment has increased. Government decided to regulate the irrigation of cellar effluent with the National Water Act of 1998 as approved by the Department of Water Affairs (DWAF). There are different ways to get rid of cellar effluent. One successful way is by constructed wetlands where plants are used to break down minerals which could be detrimental to the environment. This is a successful way to get rid of cellar effluent but could take up to six weeks before the mineral contents can be broken down by the plants. Another way is to use bio-reactors to break down the contents of the cellar effluent, but this is expensive. Wastewater consists of important nutrients needed for plant growth such as macro-nutrients like N, P, K and micro-nutrients like Fe, Zn, Mn and Cu and a substantial amount of organic matter. If cellar water, just like domestic wastewater is used for irrigation the farmer can save water when he uses less fertiliser, because of the high nutrient content in the cellar effluent. If cover crops such as oats (Avena sativa L. cv. Pallinup) in winter and pearl millet (Pennisetum glaucum (L.) R. Br.) in summer can be used to remove excess cations, as well as unwanted chemicals such as toxic metals from the soil, it may result in effluent water with a higher chemical oxygen demand (COD) level than the current legal limitations that can be used to irrigate the vineyard. The aim of this project was, therefore, to determine the ability of oat and pearl millet cover crop to remove excess minerals from the soil irrigated with augmented water at different COD levels, without a negative effect on growth and yield of the vineyard or wine quality. Field trials were carried out in a Cabernet Sauvignon/99 Richter vineyard established on a sandy soil at the Goudini Cellar near Rawsonville.
394

Olive wastewater bioremediation using a rotating biological contactor (RBC)

Tapon Njamo, Julien Serge January 2012 (has links)
Thesis (MTech (Food Technology))--Cape Peninsula University of Technology, 2012. / The expansion of the South African olive processing industry has brought an increased threat to the environment. More production activities lead to more wastewater generation that requires more costly treatment. Regulatory bodies concerned with the release of effluents into the environment are imposing evermore-restrictive guidelines. With this information in mind, the South African olive industry is facing a significant challenge of maintaining economic competitiveness while becoming more environmentally benign. To begin addressing this challenge, the olive processing industry must develop and implement new, more effective, tailored treatment technologies to remediate olive wastewater prior to its release into the environment. In this study, the use of indigenous olive wastewater biofilms in combination with a rotating biological contactor (RBC) was investigated for possible bioremediation purposes. The development of microbial biofilms resulted in the breakdown of the hazardous chemical compounds present in the olive wastewater, i.e. reducing the chemical oxygen demand (COD) and polyphenol content. Results showed that indigenous microorganisms within table olive and olive mill wastewater have a strong tendency to form biofilms. Furthermore, when these biofilms are applied to a small-scale RBC system, significant lower levels of both COD (on average 55% for table olive wastewater (TOWW) and 46% for olive mill wastewater (OMWW) and total phenol (on average 51% for TOWW and 39% for OMWW) were obtained. Results from shocking the biofilms with chemicals routinely used during olive processing indicates that most have a negative effect on the biofilm population, but that the biofilms are able to survive and recover in a relatively short time. This study confirms the potential application of indigenous biofilms found in olive wastewater streams for future bioremediation technologies that form the basis for the development of an eco-friendly, easy-to-manage, low cost technologies specifically designed for the small South African olive processing industry.
395

The effect of trees on physical and chemical properties of substrata contaminated by gold mine waste disposal

Arendze, Shakera January 2015 (has links)
A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science. Johannesburg, South Africa, 2015. / Unable to load abstract
396

Waste recycling and small, micro, and medium enterprises (SMMEs) development in Greater Kokstad Municipality.

Sobuce, Ndabazovuyo Wellington 15 February 2013 (has links)
Waste management is a global phenomenon and all nations need to ensure that waste is handled in an environmentally friendly and healthy manner. Municipalities in South Africa generate a lot of solid waste which is disposed of in the landfill site. The life span of these landfill sites is shortened by all waste that gets disposed on site. The only mechanism that can be used to minimize the amount of waste disposed of in the landfill site is waste recycling. At Greater Kokstad Municipality (GKM) there are very few companies that are involved in recycling activities. The rate of unemployment in the area is high and recycling activities would provide employment opportunities. This study is based in Kokstad and emanates from the fact that there are large volumes of waste discharged at the Kokstad landfill site. It seeks to explore the experiences and challenges faced by waste pickers and recycling SMMEs in the GKM. Also to identify reasons that causes waste pickers and SMMEs not to use the opportunity created by large volumes of unused waste to establish self-employment or employment of large numbers of unemployed people. This study used a qualitative research method and a phenomenological research design. The researcher used focus groups and semi-structured one-to-one interviews based on question themes or an interview guide. Data gathered was analyzed using Tesch’s method of data analysis and thematic content analysis. The main findings of the study revealed vital information that can assist in shaping and planning recycling activities within Greater Kokstad Municipality. Findings also highlight the need to create an environment conducive to the implementation of effective recycling initiatives.
397

The wasted years: a history of mine waste rehabilitation methodology in the South African mining industry from its origins to 1991

Reichardt, Markus 01 August 2013 (has links)
A thesis submitted to the School of Animal, Plant and Environmental Sciences (APES), University of the Witwatersrand, Johannesburg, South Africa in fulfilment of the academic requirements for the degree of Doctor of Philosophy Johannesburg, February 2013 / Decades after the commencement of modern mining in the 1870s, the South African mining industry addressed the impacts associated with its mine waste deposits. In this, it followed the pattern its international peers had set. This study aims at chronicling, for the first time, the mining industry’s efforts to develop scientifically sound and replicable methods of mine waste rehabilitation. Mindful of the limitations in accessing official and public written sources for such an applied science, the study seeks to take a broader approach: It considers factors beyond pure experimental results (of which only patchy records exist), and considers the socio-economic context or the role of certain personalities, in an effort to understand the evolution of the applied technology between the 1930s until the passage of the Minerals Act in 1991. The bulk of this mine waste rehabilitation work during this period was done by the Chamber of Mines of South Africa and its members, the gold and (later) coal miners. The focus will therefore be on these sectors, although other mining sectors such as platinum will be covered when relevant. Following decades of ad hoc experimentation, concern about impending legal pollution control requirements in the 1950s spurred key gold industry players to get ahead of the curve to head off further regulation. Their individual efforts, primarily aimed at dust suppression, were quickly combined into an industry initiative located within the Chamber of Mines. This initiative became known as the Vegetation Unit. Well resourced and managed by a dynamic leader with horticultural training – William Cook – the Unit conducted large-scale and diverse experiments between 1959 and 1963 to come up with a planting and soil amelioration methodology. The initial results of this work were almost immediately published in an effort to publicise the industry’s efforts, although Cook cautioned that this was not a mature methodology and that continued research was required. The Chamber of Mines, however, was trying to head off pending air quality legislation and in 1964/65, the organisation publicly proclaimed the methodology as mature and ready for widespread application. With this decision, the Unit’s focus shifted to widespread application while its ability to advance the methodology scientifically effectively collapsed in the 1960s and early 1970s. In addition to this shift of focus and resources to application rather than continued refinement, the Unit was constrained by non-technical and non-scientific factors: Key among them was the industry’s implicit belief, and hope, that a walk-away solution had been found. The Unit’s manager Cook stood alone in driving its application and refinement for most of his time in that position. In his day-to-day work, he lacked an industry peer with whom to discuss rehabilitation results and he compounded this isolation through limited interaction with academia until very late in his career. This isolation was amplified by the lack of relevant technical knowledge among the company representatives on the committee tasked with the oversight of the Vegetation Unit: As engineers, all of them lacked not only technical understanding of the botanical and ecological challenge, some even questioned the legitimacy of the Unit’s existence into the 1980s. In addition, the concentration of all rehabilitation efforts in this single entity structurally curtailed the individual mining companies’ interest in the advancement of the methodology, creating a further bottleneck. Indeed, as late as 1973, the key metallurgy handbook covered mine waste rehabilitation only for information purposes, specifically stating that this was the responsibility of the Chamber’s Vegetation Unit alone. To some extent, the presence of a champion within the Chamber – H. Claussen – obscured some of these challenges until the early 1970s. Indeed, the Unit had acquired additional scientific capacity by this stage, which gave it the ability to renew its research and to advance its methodology. That it failed to do so was mainly due to three factors coinciding: the retirement of its internal champion Claussen, a lack of succession planning for Cook, which left the Unit on ‘auto-pilot’ when he retired, and a rising gold price, which turned industry attention away from rehabilitation towards re-treatment of gold dumps. During this period of transition in the mid 1970s, the Chamber’s approach was thus somewhat half-hearted and vulnerable to alternative, potentially cheaper, rehabilitation proposals such as physical surface sealing advanced by Cook’s eventual successor – Fred Cartwright. Though not grounded in any science, Cartwright’s proposal gained ascendance due to his forceful personality as well as the industry’s desire for an alternative to the seemingly open-ended costs associated with the existing rehabilitation methodology. During this time, the Chamber’s structures singularly failed to protect the industry’s long-term interests: The oversight committee for the Vegetation Unit, remained largely staffed by somewhat disinterested engineers, and relied heavily on a single individual to manage the Unit. Not only did the oversight committee passively acquiesce to Cartwright’s virtual destruction of the Unit’s grassing capacity, it also allowed him to stake the Chamber’s reputation with the regulator by championing an unproven technology for about five years. Only Cartwright’s eventual failure to gain regulator approval for his – still un-proven – technique led to a reluctant abandonment by the Chamber in the early 1980s. Cartwright’s departure in 1983 left the Unit (and the industry) without the capacity to address mine waste rehabilitation, at a time when emerging environmental concerns were gaining importance in social and political spheres in South Africa and across the world. The Unit sought, unsuccessfully, to build alliances with nascent rehabilitation practitioners from the University of Potchefstroom. It furthermore failed to build mechanisms for sharing technical rehabilitation knowledge with fellow southern African or international mining chambers, leading to further stagnation of its method. At the same time, up-and-coming South African competitors such as the University of Potchefstroom seized the opportunity to enter the mine waste rehabilitation field as commercial players during the mid 1980s, at a time when the Unit had been reduced to grassing dumps for a single customer, the Department of Minerals and Energy Affairs (DMEA). Using its status as a part of the Chamber of Mines, the Unit gradually regained its position of prominence through the development of industry guidelines for rehabilitation. Yet, it would never again occupy a position of pre-eminence in practical fieldwork, as industry players, academic capacities and commercial players entered the field in the mid-1980s in response to a growing environmental movement worldwide. When the passage of the Minerals Act in 1991 formally enshrined not merely rehabilitation but environmentally responsible mine closure in law, the Unit had been reduced to a prominent but no longer dominant player in this sector. This lack of pre-eminence ultimately caused the Unit to be among the first Chamber entities to be privatised when the Chamber began to restructure. This ended its role as a central driver of applied rehabilitation techniques for the South African mining sector once and for all. As this privatisation coincided with the broader opening up of South Africa’s society and economy after the unbanning of the ANC, there would never again be an entity (commercial or otherwise) that would dominate the rehabilitation sector as the Chamber’s Vegetation Unit had done in its day.
398

Water balance and the migration of leachate into the unsaturated zone beneath a sanitary landfill.

Hojem, David John 27 January 2015 (has links)
No description available.
399

Efficiency of degrading packed bed bioreactors

Botes, Anthin John January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Chemical Engineering, 2016 / In South Africa, the need for water treatment is increasing, especially in the mining sector. As active water treatment technologies are expensive, the mining sector has an increasing need for passive water treatment technology, with low maintenance and operating costs, yet efficient water treatment ability. Literature on passive water treatment suggests that these systems only offer a narrow range of treatment capabilities. Therefore, hybrid water treatment systems could be a solution to low-cost water treatment in South Africa. The Degrading Packed Bed Reactor (DPBR) is one of the units comprising the hybrid treatment group. The DPBR’s main action is to convert sulfates into sulfides and alkalinity. In practice, the main drawback of the DPBR is clogging. Clogging lessens the amount of Acid Mine Drainage (AMD) that comes into contact with Sulfur Reducing Bacteria (SRB) in the DPBR, thereby reducing the efficiency of the bioreactor. In this study, six small-scale DPBRs were constructed. Each was classified according to its unique organic source (manure, straw, vegetable food processing waste, wood shavings, chicken litter and a combined sample with layers of all the carbon sources). Synthetic AMD was fed through the six bioreactors for a period of three months. From the small-scale DPBRs, the permeability, sulfate, iron and pH of the exit samples were measured. On average, the carbon sources removed 50 % of the sulfates and 98 % of the iron from the fed AMD. The different carbon sources showed no significant difference between each other in terms their sulfate and iron removal. The range between the best performing carbon source and the poorest performing carbon source, in terms of sulfate removal, was 17%. For iron removal, the range between the best and poorest performing carbon sources was only 2%. It was found that the permeability of the carbon sources played a larger role in the efficiency of the DPBR than the type of carbon source used. Manure is highly effective in terms of pH improvement, sulfate and iron removal. However, this is at the expense of permeability, as its packing clogs very rapidly. Compost and straw have excellent permeabilities which do not change significantly over long timeframes. This is, however, at the expense of the remedial ability of the packing materials. The combined reactor, in every instance, offers a good compromise between these different behaviours. / GR2016
400

Rib Cutting Resue Stoping, improvement on stoping rates and reduction in waste dilution compared with other known resue stoping methods on a Free State gold mine

Scholtz, Alwyn January 2018 (has links)
Mining of the Basal Reef at Jeanette Mine, is typically complicated due to an overlaying Khaki Shale (shale) that has unfavourable rock engineering properties. Shale has always been either left underground or mined as part of the orebody. The first approach can only be applied in areas where the quartzite beam (directly above the Basal Reef and below the shale) is of sufficient thickness to support the shale in the hanging wall. This method is known as undercutting. Alternatively, open stoping can be applied in areas where the shale and the Basal Reef is extracted concurrently and sent to the mill as diluted ore. Alternatively, a resue stoping method can be considered in areas where undercutting cannot be done, due to a thin quartzite middling. Resue stoping involves stowing or packing of the shale into the mined-out area and is not included as part of the hoisted rock. In the past, resue stoping was done by hand packing, which is unsuitable for a modern mine. As such, two mechanised resue stoping methods can be considered, namely; Longhole Resue Stoping and Rib Cutting Resue Stoping. Rib Cutting Resue Stoping utilises a continuous miner (“CM”) to remove the shale in a first pass, extract the reef during a second pass and backfilling the mined-out rib with shale. The use of a CM will significantly improve the extraction/mining rate, sidewall stability, backfill placement, dilution and overall safety. Longhole Resue Stoping utilises strike drives from where longholes are drilled into the shale and the reef in an up-dip direction moving on retreat. The shale is blasted with sufficient force into the mined-out area behind it, compacting it. The reef will be loaded by Load Haul Dumper (“LHD”) or dozer. It was determined that Rib Cutting Resue Stoping is more effective than Longhole Resue Stoping due to a higher extraction rate, lower dilution, reef loss reduction and improved shale sidewall stability. The operating angles and equipment height limits the application to only 51% of the available reef at Jeanette mine with favourable dip and thickness. Longhole Stoping can navigate hard rock, shale and increased dip angles; it can be applied to 91% of the available ore deposit. Longhole Resue Stoping and Rib Cutting Resue Stoping should both be considered as suitable stoping methods for Jeanette. / Thesis is submitted in partial fulfilment for the degree of Master of Science in Engineering to the Faculty of Engineering and the Built Environment, School of Mining Engineering, 2018 / XL2019

Page generated in 0.0694 seconds