• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 28
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ultraviolet disinfection kinetics for potable water production.

Amos, Steve A. January 2008 (has links)
Irradiation with ultraviolet (UV) light is used for the disinfection of bacterial contaminants in the production of potable water, and in the treatment of selected wastewaters. However, efficacy of UV disinfection is limited by the combined effect of suspended solids concentration and UV absorbance. Limited published UV disinfection data are available that account for the combined effects of UV dose, suspended solids concentration and UV absorbance. This present lack of a rigorous quantitative understanding of the kinetics of UV disinfection limits process optimisation and wider application of UV treatment. The development and validation of an adequate model to describe UV disinfection kinetics presented in this thesis can therefore be justified by an increased confidence of reliability of design for UV disinfection. Using the published data of Nguyen (1999), four established model forms were assessed to account for the combined effect of suspended solids and/or soluble UV absorbing compounds, and UV dose on the efficacy of disinfection. The four model forms were: a log-linear form, Davey Linear-Arrhenius (DL-A), Square-Root (or Ratkowsky- Belehradek) and a general nth order Polynomial (nOP) form that was limited to a third order. Criteria for assessment of an adequate predictive model were established including: accuracy of predicted against observed values, percent variance accounted for (%V), and; appraisal of residuals. The DL-A model was shown to best fit the data for UV disinfection of Escherichia coli (ATCC 25922); followed by the nOP, log-linear and Square-Root forms. However, the DL-A form must be used in conjunction with a first-order chemical reaction equation, and was shown to predict poorly at high experimental values of UV dose (> 40,000 μWs cm-2). The DL-A model was not amenable to extrapolation beyond the observed UV dose range. To overcome the shortcomings of the Davey Linear-Arrhenius model synthesis of two new, non-linear model forms was undertaken. The two models were a modified exponentially damped polynomial (EDPm) and a form based on the Weibull probability distribution. The EDPm model has three terms: a rate coefficient (k), a damping coefficient (λ), and; a breakpoint dose ([dose]B). The rate coefficient governs the initial rate of disinfection prior to the onset of tailing, whilst the breakpoint is the UV dose that indicates the onset of tailing. The damping coefficient controls curvature in the survivor curve. The Weibull model has just two terms: a dimensionless scale parameter (β0), and; a shape parameter (β1). The scale parameter represents the level of disinfection in the tail of the survivor curve (as log10 N/N0), whilst the shape parameter governs the degree of curvature of the survivor data. Each model was assessed against the independent and published UV disinfection data of Nelson (2000) for treatment of faecal coliforms in a range of waste stabilisation pond effluents. Both models were found to be well suited to account for tailing in these UV disinfection data. Overall, the EDPm model gave a better fit to the data than the Weibull model form. To rigorously validate the suitability of the new EDPm and Weibull models a series of experimental trials were designed and carried out in a small-scale pilot UV disinfection unit. These trials included data determined specifically at low values of UV dose (<10,000 μWs cm-2) to fill the gap in the experimental data of Nguyen (1999). The experimental trials were carried out using a commercially available, UV disinfection unit (LC5TM from Ultraviolet Technology of Australasia Pty Ltd). Purified water contaminated with Escherichia coli (ATCC 25922) with a range of feed water flow rates (1 to 4 L min-1) was used. E. coli was selected because it is found in sewage, or water contaminated with faecal material, and is used as an indicator for the presence of enteric pathogens. E. coli should not be present in potable water. The hydrodynamics of water flow within the disinfection unit were established using digital video photography of dye trace studies with Methylene Blue. Nominal UV dose (2,700 to 44,200 μWs cm-2) was controlled by manipulating the flow rate of feed water through the UV disinfection unit (i.e. residence time), or by varying the exposed length of the control volume of the disinfection unit. The transmittance of the feed water (at 254 nm) was adjusted by the addition of either a soluble UV absorbing agent (International RoastTM instant coffee powder; 0.001 to 0.07 g L-1), or by addition of suspended matter as diatomaceous earth (Celite 503TM; 0.1 to 0.7 g L-1, with a median particle size of 23 μm). The absorbing agent (instant coffee), when in a comparable concentration, was found to produce a greater reduction in water transmission than the suspended material (Celite 503TM). It therefore contributed to a greater reduction in the initial rate of disinfection. Neither agent was found to produce a systematic reduction in the observed efficacy of disinfection however. Experimental results highlight that in the absence of soluble absorbing agents, or suspended solids, the initial rate of disinfection is higher when fewer viable bacteria are initially present. Both the new EDPm and Weibull forms gave a good fit to the experimental data. The EDPm better fitted the data on the basis of residual sum-of-squares (0.03 to 2.13 for EDPm cf. 0.16 to 4.37 for the Weibull form). These models are both of a form suitable for practical use in modelling UV disinfection data. Results of this research highlight the impact of water quality, as influenced by the combined effect of UV dose, suspended solids concentration and UV absorbance, on small-scale UV disinfection for potable water production. Importantly, results show that the concentration of soluble UV absorbing agents and suspended solids are not in themselves sufficient criteria on which to base assessment of efficacy of UV disinfection / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1342403 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Chemical Engineering, 2008
22

Ultraviolet disinfection kinetics for potable water production.

Amos, Steve A. January 2008 (has links)
Irradiation with ultraviolet (UV) light is used for the disinfection of bacterial contaminants in the production of potable water, and in the treatment of selected wastewaters. However, efficacy of UV disinfection is limited by the combined effect of suspended solids concentration and UV absorbance. Limited published UV disinfection data are available that account for the combined effects of UV dose, suspended solids concentration and UV absorbance. This present lack of a rigorous quantitative understanding of the kinetics of UV disinfection limits process optimisation and wider application of UV treatment. The development and validation of an adequate model to describe UV disinfection kinetics presented in this thesis can therefore be justified by an increased confidence of reliability of design for UV disinfection. Using the published data of Nguyen (1999), four established model forms were assessed to account for the combined effect of suspended solids and/or soluble UV absorbing compounds, and UV dose on the efficacy of disinfection. The four model forms were: a log-linear form, Davey Linear-Arrhenius (DL-A), Square-Root (or Ratkowsky- Belehradek) and a general nth order Polynomial (nOP) form that was limited to a third order. Criteria for assessment of an adequate predictive model were established including: accuracy of predicted against observed values, percent variance accounted for (%V), and; appraisal of residuals. The DL-A model was shown to best fit the data for UV disinfection of Escherichia coli (ATCC 25922); followed by the nOP, log-linear and Square-Root forms. However, the DL-A form must be used in conjunction with a first-order chemical reaction equation, and was shown to predict poorly at high experimental values of UV dose (> 40,000 μWs cm-2). The DL-A model was not amenable to extrapolation beyond the observed UV dose range. To overcome the shortcomings of the Davey Linear-Arrhenius model synthesis of two new, non-linear model forms was undertaken. The two models were a modified exponentially damped polynomial (EDPm) and a form based on the Weibull probability distribution. The EDPm model has three terms: a rate coefficient (k), a damping coefficient (λ), and; a breakpoint dose ([dose]B). The rate coefficient governs the initial rate of disinfection prior to the onset of tailing, whilst the breakpoint is the UV dose that indicates the onset of tailing. The damping coefficient controls curvature in the survivor curve. The Weibull model has just two terms: a dimensionless scale parameter (β0), and; a shape parameter (β1). The scale parameter represents the level of disinfection in the tail of the survivor curve (as log10 N/N0), whilst the shape parameter governs the degree of curvature of the survivor data. Each model was assessed against the independent and published UV disinfection data of Nelson (2000) for treatment of faecal coliforms in a range of waste stabilisation pond effluents. Both models were found to be well suited to account for tailing in these UV disinfection data. Overall, the EDPm model gave a better fit to the data than the Weibull model form. To rigorously validate the suitability of the new EDPm and Weibull models a series of experimental trials were designed and carried out in a small-scale pilot UV disinfection unit. These trials included data determined specifically at low values of UV dose (<10,000 μWs cm-2) to fill the gap in the experimental data of Nguyen (1999). The experimental trials were carried out using a commercially available, UV disinfection unit (LC5TM from Ultraviolet Technology of Australasia Pty Ltd). Purified water contaminated with Escherichia coli (ATCC 25922) with a range of feed water flow rates (1 to 4 L min-1) was used. E. coli was selected because it is found in sewage, or water contaminated with faecal material, and is used as an indicator for the presence of enteric pathogens. E. coli should not be present in potable water. The hydrodynamics of water flow within the disinfection unit were established using digital video photography of dye trace studies with Methylene Blue. Nominal UV dose (2,700 to 44,200 μWs cm-2) was controlled by manipulating the flow rate of feed water through the UV disinfection unit (i.e. residence time), or by varying the exposed length of the control volume of the disinfection unit. The transmittance of the feed water (at 254 nm) was adjusted by the addition of either a soluble UV absorbing agent (International RoastTM instant coffee powder; 0.001 to 0.07 g L-1), or by addition of suspended matter as diatomaceous earth (Celite 503TM; 0.1 to 0.7 g L-1, with a median particle size of 23 μm). The absorbing agent (instant coffee), when in a comparable concentration, was found to produce a greater reduction in water transmission than the suspended material (Celite 503TM). It therefore contributed to a greater reduction in the initial rate of disinfection. Neither agent was found to produce a systematic reduction in the observed efficacy of disinfection however. Experimental results highlight that in the absence of soluble absorbing agents, or suspended solids, the initial rate of disinfection is higher when fewer viable bacteria are initially present. Both the new EDPm and Weibull forms gave a good fit to the experimental data. The EDPm better fitted the data on the basis of residual sum-of-squares (0.03 to 2.13 for EDPm cf. 0.16 to 4.37 for the Weibull form). These models are both of a form suitable for practical use in modelling UV disinfection data. Results of this research highlight the impact of water quality, as influenced by the combined effect of UV dose, suspended solids concentration and UV absorbance, on small-scale UV disinfection for potable water production. Importantly, results show that the concentration of soluble UV absorbing agents and suspended solids are not in themselves sufficient criteria on which to base assessment of efficacy of UV disinfection / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1342403 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Chemical Engineering, 2008
23

Disinfection of bacteria by photocatalytic oxidation.

January 2006 (has links)
Wong Man Yung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 106-120). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Table of Contents --- p.vi / List of Figures --- p.xi / List of Plates --- p.xiii / List of Tables --- p.xv / Abbreviations --- p.xvi / Equations --- p.xviii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Water disinfection --- p.1 / Chapter 1.2 --- Bacterial species --- p.2 / Chapter 1.2.1 --- Staphylococcus saprophyticus --- p.2 / Chapter 1.2.2 --- Enterobacter cloacae --- p.3 / Chapter 1.3 --- Disinfection methods --- p.4 / Chapter 1.3.1 --- Physical methods --- p.4 / Chapter 1.3.1.1 --- UV-C irradiation --- p.4 / Chapter 1.3.1.2 --- Solar disinfection --- p.5 / Chapter 1.3.2 --- Chemical methods --- p.6 / Chapter 1.3.2.1 --- Chlorination --- p.6 / Chapter 1.3.2.2 --- Ozonation --- p.7 / Chapter 1.3.2.3 --- Mixed disinfectants --- p.8 / Chapter 1.3.3 --- Other disinfection methods --- p.8 / Chapter 1.4 --- Advanced oxidation processes (AOPs) --- p.9 / Chapter 1.5 --- Photocatalytic oxidation (PCO) --- p.10 / Chapter 1.5.1 --- PCO process --- p.12 / Chapter 1.5.2 --- Photocatalysts --- p.14 / Chapter 1.5.2.1 --- Titanium dioxide (P25) --- p.15 / Chapter 1.5.2.2 --- Silver sensitized P25 (Ag/P25) --- p.16 / Chapter 1.5.2.3 --- Silicon dioxide doped titanium dioxide (SiO2-TiO2) --- p.17 / Chapter 1.5.2.4 --- Copper(I) oxide sensitized P25 (Cu2O/P25) --- p.18 / Chapter 1.5.3 --- Irradiation sources --- p.19 / Chapter 1.5.4 --- PCO disinfection mechanisms --- p.20 / Chapter 1.6 --- Bacterial defense mechanisms against oxidative stress --- p.22 / Chapter 2. --- Objectives --- p.25 / Chapter 3. --- Materials and Methods --- p.26 / Chapter 3.1 --- Chemicals --- p.26 / Chapter 3.2 --- Bacterial culture --- p.26 / Chapter 3.3 --- Photocatalytic reactor --- p.27 / Chapter 3.4 --- PCO efficacy test --- p.30 / Chapter 3.5 --- Optimization of PCO conditions --- p.31 / Chapter 3.5.1 --- Effect of P25 concentrations --- p.31 / Chapter 3.5.2 --- Effect of UV intensities --- p.32 / Chapter 3.5.3 --- Combinational study of P25 concentrations and UV intensities --- p.32 / Chapter 3.5.4 --- Effect of stirring rates --- p.32 / Chapter 3.5.5 --- Effect of initial cell concentrations --- p.33 / Chapter 3.6 --- PCO disinfection using different photocatalysts --- p.33 / Chapter 3.6.1 --- Effect of CU2O/P25 concentrations --- p.33 / Chapter 3.6.2 --- Effect of CU2O powder on the two bacterial species --- p.33 / Chapter 3.7 --- Transmission electron microscopy (TEM) --- p.34 / Chapter 3.8 --- Catalase (CAT) test --- p.37 / Chapter 3.9 --- Superoxide dismutase (SOD) activity assay --- p.39 / Chapter 4. --- Results --- p.40 / Chapter 4.1 --- Efficacy test --- p.40 / Chapter 4.2 --- PCO disinfection under UV irradiation --- p.40 / Chapter 4.2.1 --- Control experiments --- p.40 / Chapter 4.2.2 --- Optimization of PCO conditions using P25 as a photocatalyst --- p.42 / Chapter 4.2.2.1 --- Effect of P25 concentrations --- p.42 / Chapter 4.2.2.2 --- Effect of UV intensities --- p.45 / Chapter 4.2.2.3 --- Combinational study of P25 concentrations and UV intensities --- p.48 / Chapter 4.2.2.4 --- Effect of stirring rates --- p.54 / Chapter 4.2.2.5 --- Effect of initial cell concentrations --- p.57 / Chapter 4.2.3 --- Comparison of PCO inactivation efficiency between S. saprophyticus and E. cloacae --- p.60 / Chapter 4.2.4 --- PCO disinfection using different photocatalysts --- p.62 / Chapter 4.2.4.1 --- Control experiments --- p.62 / Chapter 4.2.4.2 --- Ag/P25 --- p.62 / Chapter 4.2.4.3 --- SiO2-TiO2 --- p.64 / Chapter 4.2.4.4 --- Cu2O/P25 --- p.64 / Chapter 4.3 --- PCO disinfection under visible light irradiation --- p.66 / Chapter 4.3.1 --- Effect of Cu2O/P25 concentrations --- p.67 / Chapter 4.3.2 --- Effect of CU2O powder on the two bacterial species --- p.70 / Chapter 4.4 --- Feasibility use of indoor light (fluorescent lamps) for PCO disinfection --- p.71 / Chapter 4.5 --- Transmission electron microscopy (TEM) --- p.74 / Chapter 4.5.1 --- Morphological changes induced by PCO using P25 as a photocatalyst --- p.74 / Chapter 4.5.2 --- Morphological changes induced by PCO using Cu2O/P25 as a photocatalyst --- p.77 / Chapter 4.6 --- Catalase (CAT) test --- p.80 / Chapter 4.7 --- Superoxide dismutase (SOD) activity assay --- p.82 / Chapter 5. --- Discussion --- p.83 / Chapter 5.1 --- Efficacy test --- p.83 / Chapter 5.2 --- PCO disinfection under UV irradiation --- p.83 / Chapter 5.2.1 --- Optimization study --- p.84 / Chapter 5.2.1.1 --- Effect of P25 concentrations --- p.84 / Chapter 5.2.1.2 --- Effect of UV intensities --- p.85 / Chapter 5.2.1.3 --- Combinational study of P25 concentrations and UV intensities --- p.86 / Chapter 5.2.1.4 --- Effect of stirring rates --- p.86 / Chapter 5.2.1.5 --- Effect of initial cell concentrations --- p.87 / Chapter 5.2.2 --- Comparison of PCO inactivation efficiency between S. saprophyticus and E. cloacae --- p.88 / Chapter 5.2.3 --- PCO disinfection using different photocatalysts --- p.89 / Chapter 5.2.3.1 --- Ag/P25 --- p.89 / Chapter 5.2.3.2 --- SiO2-TiO2 and Cu2O/P25 --- p.90 / Chapter 5.3 --- PCO disinfection under visible light irradiation --- p.90 / Chapter 5.3.1 --- Effect of Cu20/P25 concentrations --- p.91 / Chapter 5.3.2 --- Effect of CU2O powder on the two bacterial species --- p.92 / Chapter 5.4 --- Feasibility use of fluorescent lamps for PCO disinfection --- p.93 / Chapter 5.5 --- Transmission electron microscopy (TEM) --- p.95 / Chapter 5.5.1 --- Morphological changes induced by PCO using P25 as a photocatalyst --- p.95 / Chapter 5.5.2 --- Morphological changes induced by PCO using CU2O/P25 as a photocatalyst --- p.96 / Chapter 5.6 --- Catalase (CAT) test --- p.98 / Chapter 5.7 --- Superoxide dismutase (SOD) activity assay --- p.99 / Chapter 6. --- Conclusion --- p.101 / Chapter 7. --- References --- p.106 / Chapter 8. --- Appendix --- p.121
24

Disinfection by-products and public health concerns

McAuley, Kimberley January 2009 (has links)
Disinfection by-products (DBPs) are a major group of water contaminants and their role in causing adverse health outcomes, including adverse pregnancy outcomes, endocrine disruption, respiratory related adverse health outcomes and cancer has been subject to extensive epidemiological and toxicological research and review. Determination of safe exposure to DBPs, particularly within drinking water supplies, has been a topic of extensive debate, with a wide range of acceptable levels set across the industrialized world. The focus of the research in this thesis was on two of the main health outcomes associated with DBP exposure, namely adverse pregnancy outcomes and asthma related symptoms. To assess adverse pregnancy outcomes in Perth, an extensive classification quantification of the major DBPs in Perth drinking water was conducted. A registrybased prevalence study was carried out to assess birth defects in relation to high, medium and low DBP areas (defined by the water sampling and analysis). It was found that women living in high THM areas are 22% (odds ratio (OR) 1.22, 95% confidence interval (95% CI) 1.01-1.48) more likely of having a baby with any birth defect. High exposure was also strongly associated with an increased risk of having a baby with a cardiovascular defect (62% increased risk). Low birth weight and prematurity were also assessed; however these outcomes were not associated with an increased risk through an increase in exposure. Following on from this analysis, a population risk assessment model was developed for DBPs in high exposure environments. This involved a three step process: (i) Firstly a questionnaire-based validation and reliability study was used to assess water consumption patterns of a population of pregnant women in Perth. (ii) Secondly a prediction model for teratogenic burden of DBPs in Perth was developed, related to the exposure patterns of the population of pregnant women involved in the validation and reliability study. (iii) Finally, combining the information collected in (i) and (ii), along with the regression slope estimates for birth weight from the prevalence study (defined in Section 2.2.1), a dose-response model for THMs and birth weight was developed. Predictive simulations for birth weights at given THM levels were then conducted. It was estimated that pregnant women in Perth are exposed to between 0.3 – 4.10 µg/day ingested TTHM, and of this, the more toxic brominated forms accounted for between 0.27 – 3.69 µg/day. Based on a dose-response model used, birthweights calculated for the ‘hypothetical’ exposures ranged from 3403.2g for the highest exposure to 3503.5g in the lowest exposure, which is a difference of over 100g. Although the resulting reduction in birth weight is not extreme, there is still a significant reduction in birth weight present as exposure to TTHMs increases. This is the first doseresponse model to be developed to assess an adverse pregnancy outcome based on pregnant women exposure data, and will be a useful tool for assessing varying exposures throughout not only Australia but also throughout the industrialised world, where DBP exposure is highly prevalent.
25

Solar disinfection of drinking water : effectiveness in peri-urban households in Siddhipur Village, Kathmandu Valley, Nepal

Rainey, Rochelle C. 15 April 2003 (has links)
Graduation date: 2003 / Best scan available on figures. Original figures are dark.
26

Visualization and quantification of hydrodynamics and dose in UV reactors by 3D laser induced fluorescence

Gandhi, Varun N. 13 November 2012 (has links)
The validation of UV reactors is currently accomplished by biodosimetry, in which the reactor is treated as a "black-box" and hence cannot account for the dependence of the dose delivery on the complex hydrodynamics and the spatial variation in UV intensity. Alternative methods, such as fluorescent microspheres as non-biological surrogates and computational fluid dynamics (CFD) simulations, have been developed; however, each method has its shortcomings. In this study, a novel technique for the spatial and temporal assessment of the hydrodynamics and the UV dose delivered and the link between these two factors in a lab-scale UV reactor using three dimensional laser induced fluorescence (3DLIF) is developed. This tool can also be utilized for the optimization of UV reactors and to provide data for validation of CFD-based simulation techniques. Regions of optimization include areas around the UV lamp where short-circuiting occurred, a longer inlet approach section that enhances the performance of the reactor by reducing short circuiting paths and a longer outlet region to provide greater mixing. 3DLIF allows real time characterization of mixing and dose delivery in a single lamp UV reactor placed perpendicular to flow by capturing fluorescence images emitted from a laser dye, Rhodamine 6G, using a high speed CCD camera. In addition to three-dimensional mixing, the technique successfully visualized the two-dimensional, transient mixing behaviors such as the recirculation zone and the von Karman vortices and the fluence delivery within the reactor, which has not been possible with traditional tracer test techniques. Finally, a decomposition technique was applied to the flow and fluence delivery based concentration data to reveal similar structures that affect these phenomena. Based on this analysis, changing the flow in the reactor, i.e. the Reynolds number, will directly affect the fluence delivery.
27

Large eddy simulation of flow in water and wastewater disinfection reactors

Kim, Dongjin 17 May 2011 (has links)
Hydrodynamic behavior in reactors used for water treatment, particularly in ozone contactors with serpentine flow, is known to strongly affect the process efficiency. However, exact flow characteristics inside these reactors are not well understood, as traditional approach either considers these reactors as black box or relies on less accurate Reynolds-Averaged Navier-Stokes (RANS) simulation. In order to provide a deep understanding of the hydrodynamics and solute transport phenomena in these reactors, high resolution numerical studies using the Large Eddy Simulation (LES) method are performed. The reactor geometries investigated in this research are Constant Baffle Spacing Multi-Chamber (CBSMC) ozone contactors and a Variable Baffle Spacing ozone contactor Model (VBSM). The LES results in two multi-chamber ozone contactors (CBSMC -Normal-Width and -Half-Width) suggest that the flow through these reactors is characterized by the presence of extensive short-circuiting and large internal recirculation. The results also suggest that the flow is highly three dimensional with a pair of symmetric counter-rotating secondary vortices. LES studies based on VBSM, the baffle spacing of which varies between 0.5 times to 5 times the size of the base chamber; suggest that the width of the recirculation zone grows at about the same rate as the baffle spacing. Instantaneous turbulent eddies are prevalent in the chamber and increase turbulent mixing. The elevated levels of turbulence are found in the short-circuiting flow path. The tracer is dispersed along the short-circuiting path and strongly into the recirculation zone due to turbulent diffusion. Baffle spacing greater than the entrance gate height, but also smaller baffle spacing, worsens the disinfection efficiency. Finally, the turbulent Schmidt number of RANS simulation was investigated by employing the previously validated LES simulation. Due to the presence of very strong turbulent diffusion in the reactors, the turbulent Schmidt number is found out to be much less than the values commonly used, and is also specific to the baffle spacing.
28

Effect of amine-based water treatment polymers on the formation of N-nitrosodimethylamine (NDMA) disinfection by-product

Park, Sang Hyuck 17 January 2008 (has links)
In recent years, a compound N-nitrosodimethylamine (NDMA), a probable human carcinogen, has been identified as an emerging disinfection by-product (DBP) since its formation and detection were linked to chlorine-based disinfection processes in several water utilities in the U.S. and Canada. Numerous organic nitrogen compounds present in water may impact the formation of NDMA during disinfection. Amine-based water treatment polymers used as coagulants and flocculants have been suggested as potential NDMA precursors due to the presence of amine functional groups in their structures, as well as the possible presence of dimethylamine (DMA) residues in polymer products. To minimize the potential risk of NDMA associated with water treatment polymers, the mechanisms of how the polymers behave as NDMA precursors and their contribution to the overall NDMA formation under actual water treatment conditions need to be elucidated. This research involved a systematic investigation to determine whether amine-based water treatment polymers contribute to NDMA formation under drinking water and wastewater treatment conditions, to probe the involved reaction mechanisms, and to develop strategies to minimize the polymers NDMA formation potential. The investigation included five research tasks: (1) General screening of NDMA formation potential of commonly used amine-based water treatment polymers, (2) NDMA formation from amine-based water treatment polymers under relevant water treatment conditions, (3) Probing the mechanisms of NDMA formation from polyamine and PolyDADMAC, (4) Effect of water treatment processes on NDMA formation from amine-based water treatment polymers, and (5) Developing strategies to reduce polymers NDMA formation potential. Direct chloramination or chlorination of high doses of polymers in deionized water at longer than typical contact time was used in the general screening of the NDMA formation potential of water treatment polymers and in the studies to identify reaction mechanisms. On the other hand, realistic dosages of chloramines and polymers and contact time were used in simulating representative water treatment conditions to evaluate the contribution of polymers to the overall NDMA formation in real systems. On the basis of the study results, strategies were developed to reduce the NDMA formation potential of amine-based water treatment polymers, which include modification of polymer structures and treatment parameters.

Page generated in 0.1933 seconds