• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 165
  • 22
  • 15
  • 9
  • 6
  • 6
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 449
  • 449
  • 179
  • 170
  • 95
  • 86
  • 72
  • 52
  • 48
  • 46
  • 41
  • 41
  • 39
  • 35
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Modelling of a Bioretention Cell Soil Moisture Regime in Southern Ontario

Paquette, Samantha 04 May 2012 (has links)
Current stormwater management practices (SMP) are not sufficient for maintaining predevelopment runoff volumes. Low impact development (LID) uses site scale SMP to reduce runoff. Bioretention cells, one practice within LID, are small planting beds designed to filter and infiltrate runoff using amended soil and vegetation. The bioretention cell can create a harsh soil moisture regime for plants that has not been adequately characterized. Bioretention cell construction, meteorological, and soil science data were built into the Happy Plant Model to determine how often bioretention plants were saturated and experienced water stress over a thirty year period. The model takes into account eight design factors: soil media depth and texture, gravel storage, ponding depth, drainage area, in situ soil infiltration rate, the landscape coefficient, and root zone depth. The Happy Plant model will aid future studies and landscape architecture practitioners with bioretention plant selection.
52

Assessment of Evapotranspiration Models under Hyper Arid Environments

Alblewi, Bander H 17 May 2012 (has links)
With a precipitation falling to as low as 100 mm/yr, a high rate of non-renewable groundwater depletion, a growing population resulting in increased food demand and a lack of concern for water management, it is crucial to use all available tools to conserve water. One of the most important factors related to water management is crop evapotranspiration. This research examines five crop evapotranspiration models (one combination model, three radiation based models and one temperature based model) under hyper arid environment at practical field level. These models have been evaluated and calibrated using an alfalfa weekly water balance in 2010. The calibrated models have been evaluated and validated using wheat and potatoes on a weekly water balance, respectively. Based on the results and discussion, FAO-56 PM proved to be superior at estimating crop evapotranspiration while radiation and temperature based models underestimated evapotranspiration and would require subsequent local calibration. However, the drawback of FAO-56 PM is that it requires all weather data and is also significantly more complicated than other models. Important observations that were made are that calibrated Turc and Makkink models performed poorly even when they were calibrated while simple models such as calibrated Hargreaves-Samani (temperature-based) and Priestley–Taylor (radiation-based) can be adequately used for irrigation scheduling in a hyper arid environments. / Ministry of Higher Education, Saudi Cultural Bureau in Canada. Saudi Agricultural Development Company (INMA).
53

Seasonal and interannual variation in water vapor fluxes and energy balance in a moist mixed grassland

Wever, Linda A., University of Lethbridge. Faculty of Arts and Science January 2001 (has links)
Fluxes of sensible and latent heat were measured over a grassland during 1998 and 1999 using the eddy covariance technique. The study objectives were to document seasonal and interannual variation evapotranspiration. Bowen ratios were lower in 1998 (0.5-3.0) than in 1999 (2.5-8.5) due to lower evapotranspiration rates (E). Maximum E also occurred later in 1998 than in 1999; Day 188 (10.4 mmol m-2s-1) versus Day 152 (5.6 mmol m-2s-1). Daily evapotranspiration rates were positively correlated with net radiation, canopy conductance, plant nitrogen content, leaf area index and soil moisture. Based on calculations of the decoupling coefficient (O). evapotranspiration was more constrained by canopy conductance in 1999 (O<0.2) than in 1998 (O>0.3). Evapotranspiration and energy partitioning in this grassland were sensitive to seasonal changes in soil moisture and interannaual variation in spring precipitation. Annual evapotranspiration was 300 mm. / x, 70 leaves : ill. ; 28 cm.
54

Quantifying and benchmarking irrigation scheme performance with water balances and performance indicators.

Greaves, Kevin Robert. January 2007 (has links)
South Africa is a water scarce country. As pressure on available water resources increases, irrigation, the largest consumer of water, has to find ways of improving water use efficiency. Benchmarking in the irrigation sector has been identified as a suitable technique to implement this improvement. Benchmarking can be broadly defined as the identification and application of organisation specific best practices with the goal of improving competitiveness, performance and efficiency. A South African sugarcane irrigation scheme was identified to investigate a proposed benchmarking methodology. The scheme was unique in that electromagnetic flow meters were utilised and monitored on a daily basis. This facilitated an in depth study into irrigation water use at the scheme. The project focused on three different objectives. The first objective was to determine the losses, and consequently the efficiency, with which the irrigation scheme was able to deliver irrigation water from the water source to the farm boundary during the years 2004 and 2005. This was achieved by completing the water balance for the scheme with specified geographic and temporal boundaries. Results indicated that the scheme was very efficient with a delivery efficiency of 83.4 and 94.0 % for 2004 and 2005 respectively. These efficiencies were above the accepted South African Department of Water Affairs and Forestry (DWAF) standard of 80 %. The temporal distribution of the delivery efficiency was also investigated to identify periods within each year when inefficiencies occurred, and to better understand the nature of potential losses. It was concluded that the investigations into the temporal distributions be utilised together with the water balance approach in future studies into the performance of irrigation water delivery infrastructure at other South African irrigation schemes. The second objective was to calculate a set of internationally applied external irrigation benchmarking indicators. External indicators from the International Water Management Institute (1WMI), the International Program for Training and Research in Irrigation and Drainage (IPTRID) and the Irrigation Training and Research Center (ITRC) were reviewed for application in a South African context. The external indicator analysis highlighted that at a scheme level, insufficient irrigation was occurring to effectively meet the irrigation demand. It was also found that the scheme infrastructure was not the limiting cause of this observation. The external indicator results highlighted the need for additional schemes for comparison purposes. The results from this component of the study also emphasized the importance of stakeholder confidentiality concerns when attempting to implement a benchmarking initiative. The third objective was to rank individual farm performance of all the farms in the scheme, in terms of total farm sugarcane yield and seasonal irrigation water use. Farm yield and irrigated area were obtained to investigate the relationships between yield and irrigation water application. There were substantial variations in total farm yield and water use for both the 2004 and 2005 seasons, indicating much potential for improvement by many farmers relative to each other. The individual seasonal farm water use was also compared to a simulated irrigation demand, as determined with the SAsched irrigation systems and crop yield model. Simulation results with the SAsched model, using representative soils and climate data for the scheme, showed that the majority of farms were under irrigating relative to the simulated demands, especially in the late spring/early summer period. From on-farm irrigation system evaluations that were performed, it was found that irrigation system capacity constraints were not limiting irrigation applications in the majority of farms. Further research in the form of selected soil water monitoring is required to investigate these observations further. / Thesis (M.Sc.)-University of KwaZulu-Natal, 2007.
55

Rening av lakvatten vid deponin Degermyran i Skellefteå kommun : Utvärdering av nuvarande reningseffekt och simulering av mängden bildat lakvatten under 2000-talets klimatförändringar

Vinterek, Sebastian January 2015 (has links)
At Degermyran landfill, situated in the municipal Skellefteå, a leachate treatment system was installed in 2005. One of the aims of this study was to investigate how well the treatment system works by using data from chemical measurements made on the leachate before and after treatment. Further this study had the purpose of investigating how the predicted climate changes of the 21st century will affect the amount of leachate generated at Degermyran by using a modified version of Thornthwaites water balance model. The treatment system has the ability of reducing manganese by 90 %, nitrogen by 73 % och TOC by 79 %. By the turn of this century the amount of precipitation that percolates the waste at Degermyran will be between 254 and 298 mm, depending on the amount of greenhouse gases that will be released in the future to come. The conclusions from this study are that the leachate treatment system reduces the levels of the investigated substances and that the amount of leachate produced at Degermyran will increase. To further investigate the efficiency of the leachate treatment system, flow proportionate measurements of the leachate chemistry could be adopted. If accurate flow measurements of the amount of generated leachate were performed the reliability of the used water balance model could be assessed.
56

Interannual variation in water and energy exchanges at a larch forest in Spasskaya

Ohta, Takeshi, Kuwada, Takashi, Dolman, Han, Moors, Eddy, Maximov, Trofim C., Kononov, Alexander V., Yabuki, Hironori 26 January 2006 (has links)
主催:JST/CREST,Vrije University, ALTERRA, IBPC
57

Water balance of the Pearl Harbor-Honolulu Basin, 1946-1975

Giambelluca, Thomas Warren January 1983 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1983. / Bibliography: leaves 289-308. / Microfiche. / xvi, 308 leaves, bound ill., maps 29 cm
58

Method development for the determination of epichlorohydrin in drinking water /

Clivet, Isabelle Marie Beatrice. Unknown Date (has links)
The aim of this project was to develop a method for the determination of epichlorohydrin in drinking water. First, epichlorohydrin was studied on gas chromatography (GC) to determine the retention time. Then, epichlorohydrin was used to optimise the GC parameters : best detector, detector temperature, total detector flow, injector temperature and column temperature program. Secondly, epichlorohydrin was extracted by Solid Phase Micro-Extraction (SPME) and by Solid Phase Extraction (SPE) and analysed by GC to optimise the extraction mode parameters : SPME extraction mode, salt saturation, fibre selection, sample temperature, fibre placement, stirring and vibration, extraction time ; SPE tube selection, volume of extraction, extraction flow rate, salt saturation, drying process, solvent of elution, volume of solvent. Thirdly, the limit of detection of both extraction modes by GC was looked at to decide on the best extraction technique for epichlorohydrin. Fourth, epichlorohydrin was extracted by SPME direct immersion and analysed by gas chromatography/mass spectroscopy (GC/MS). A calibration curve was obtained with the analyses of Milli-Q water sample spiked with epichlorodydrin. A limit of detection was determined at 0.38 μg/L. Finally, water samples from the Adelaide distribution system were analysed by GC/MS through two columns but epichlorohydrin could not be separated from bromodichloromethane present in drinking water from the disinfection process. / Thesis (MEng(HydrologyWaterResources))--University of South Australia, 2003.
59

Evaluating the impacts of rainwater harvesting (RWH) in a case study catchment: The Arvari River, Rajasthan, India

Glendenning, Claire January 2009 (has links)
Doctor of Philosophy(PhD) / In many areas of India, increasing groundwater use has led to depleted aquifers. Rainwater harvesting (RWH), the small scale collection and storage of runoff to augment groundwater stores, is seen as a solution to the deepening groundwater crisis in India. However while the social and economic gains of RWH have been highlighted, there has not yet been a thorough attempt to evaluate the impacts of RWH on larger catchment hydrological balances. The thesis here will endeavour to address this research gap through a case study of the 476 km2 ungauged semi-arid Arvari River catchment in the state of Rajasthan. Over 366 RWH structures have been built in this catchment since 1985 by the community and the local non-government organisation (NGO), Tarun Bharat Sangh (TBS). The local effects of RWH structures and general catchment characteristics were determined through field investigations during the monsoon seasons of 2007 and 2008. The analysis described large variability in both climatic patterns and recharge estimates. Potential recharge estimates from seven RWH storages, of three different sizes and in six landscape positions, were calculated using the water balance method, which were compared with recharge estimates from water level rises in twenty-nine dug wells using the water table fluctuation method. The average daily potential recharge from RWH structures is between 12 – 52 mm/day, while recharge reaching the groundwater was between 3 – 7 mm/day. The large difference between recharge estimates could be explained through soil storage, and a large lateral transmissivity in the aquifer. Approximately 7% of rainfall is recharged by RWH in the catchment, which is similar in both the comparatively wet and dry years of the field analysis. This is because the capacity of an individual structure to induce recharge is related to structure size and capacity, catchment runoff characteristics and underlying geology. Due to the large annual fluctuations in groundwater levels, the field study results suggest that RWH has a large impact on the groundwater supply, and that there is a large lateral flow of groundwater in the area. The results inferred from the field analysis were then applied to a conceptual water balance model to study catchment-scale impacts of RWH. An existing model was not used because of the paucity of data, and the need to incorporate an effective representation of RWH function and impact. The model works on a daily time step and is divided into subbasins. Within the subbasin hydrological response units (HRUs) describe the different land use/soil combinations associated with the Arvari River catchment, including irrigated agriculture. Sustainability indices, related to water from groundwater and rainfall for irrigated agriculture demand, were used to compare scenarios of management simulated in the conceptual model. The analysis shows that as RWH area increases, it reaches a limiting capacity from where developing additional RWH area does not increase the benefit to groundwater stores, but substantially reduces streamflow. This limiting capacity was also seen at the local-scale, where cumulative potential recharge from an individual RWH structure reaches a maximum daily recharge rate. These results could have important implications for RWH development, but require further research. The analysis highlighted the important link between irrigation area and RWH area. If the irrigation area is increased at the optimal level of RWH, where the sustainability indices were greatest, the resilience of the system actually decreased. Nevertheless RWH in a system increased the overall sustainability of the water demand for irrigated agriculture, compared to a system without RWH. Also RWH provided a slight buffer in the groundwater store when drought occurred. While RWH addresses the supply-side issues of groundwater operation, the institutions that form rules for groundwater use must also be considered, because of the link between irrigation area and RWH. The Arvari River Parliament, the community-based group in the case study area, was examined according to Ostrom’s factors for collective action. It was found that the major limitation for the effectiveness of this group was the minimal information available about the aquifer characteristics.
60

Drainage and water uptake terms in the water balance / P. Ponsana

Ponsana, Paitoon January 1975 (has links)
xviii, 211 leaves : tables, photos, (1 col.), diags ; 25 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Agronomy, 1976

Page generated in 0.1884 seconds