• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 14
  • 8
  • 6
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of water repellency and critical water content in undisturbed and reclaimed soils from the Athabasca Oil Sands Region of Alberta, Canada

Hunter, Amanda Evelyn 13 July 2011
Ecosystems are disturbed to extract synthetic crude oil from the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada. Successful reclamation of mined oil sands sites depends on maximizing water storage and minimizing the potential for erosion. Soil water repellency in the AOSR affects undisturbed sites and consequently reclamation materials. Extreme water repellency may lead to low infiltration rates and hinder reclamation. There is a lack of information about the naturally occurring and pre-existing levels of soil water repellency in the AOSR. Thus, questions arise about the degree of naturally occurring water repellency and the potential for severe water repellency in reclamation soils. Studies were conducted on nine sites in the AOSR in the summers of 2008 and 2009. A range of undisturbed and reclaimed sites, as well as mineral and organic reclamation materials were examined. Five undisturbed Jack Pine stands (classified as A ecosites), four reclaimed sites and reclamation materials including mineral soil, peat and leaf and lichen covering the forest floor (LFH) were studied. For a comparison of methods, one grasslands site in central Saskatchewan was included. Mini and standard tension infiltrometers were compared as a means of measuring soil water repellency index (RI). There was strong variability in RI values between the infiltrometer methods. The mean RI values from the mini infiltrometers were higher than from the standard infiltrometer (9.61 and 3.46, respectively). The variability within sites dominated the variability in RI for the two methods. Despite these obvious trends, RI values between infiltrometer sizes were statistically different for only two individual sites. Increasing the number of sampling points in the second field season did not reduce the variability. The simpler, less expensive mini infiltrometer is as effective as the standard infiltrometer in measuring soil water repellency. This will enable more efficient and extensive monitoring of soil water repellency in reclaimed and undisturbed sites in the AOSR. Soil water repellency of reclaimed and undisturbed sites was investigated in situ using RI, the water droplet penetration time (WDPT) test, and the molarity of ethanol droplet (MED) test. These measures showed similar trends. Variability in soil water repellency was high at both reclaimed and undisturbed sites. The average RI value for the surface of reclaimed sites was higher than that of the subsurface at reclaimed sites; however, there were no statistical differences between RI values of surface reclaimed and undisturbed sites (P =0.213) due to high spatial variability. The critical water content (CWC) of reclamation materials was determined by measuring the contact angle (CA) and WDPT. Generally, CA and WDPT were inversely related to water content, though variability was high and the relationship between water content was weak. The clearest relationship between water repellency and water content was present for the mineral soil samples. Reclaimed mineral soil was generally wettable above gravimetric water contents of 5-10 %, while the coarse textured tarball affected materials were only subcritically water repellent. There was no relationship between water repellency and water content for peat and LFH. The degree of water repellency was statistically higher for peat materials with increasing decomposition levels. The average WDPT was 44, 128 and 217 s for fibric, mesic, and humic peat, respectively. With careful management and monitoring, water repellency may not be a major limitation to reclamation success. The mini tension infiltrometer is an effective method for monitoring soil water repellency in the AOSR.
2

Investigation of water repellency and critical water content in undisturbed and reclaimed soils from the Athabasca Oil Sands Region of Alberta, Canada

Hunter, Amanda Evelyn 13 July 2011 (has links)
Ecosystems are disturbed to extract synthetic crude oil from the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada. Successful reclamation of mined oil sands sites depends on maximizing water storage and minimizing the potential for erosion. Soil water repellency in the AOSR affects undisturbed sites and consequently reclamation materials. Extreme water repellency may lead to low infiltration rates and hinder reclamation. There is a lack of information about the naturally occurring and pre-existing levels of soil water repellency in the AOSR. Thus, questions arise about the degree of naturally occurring water repellency and the potential for severe water repellency in reclamation soils. Studies were conducted on nine sites in the AOSR in the summers of 2008 and 2009. A range of undisturbed and reclaimed sites, as well as mineral and organic reclamation materials were examined. Five undisturbed Jack Pine stands (classified as A ecosites), four reclaimed sites and reclamation materials including mineral soil, peat and leaf and lichen covering the forest floor (LFH) were studied. For a comparison of methods, one grasslands site in central Saskatchewan was included. Mini and standard tension infiltrometers were compared as a means of measuring soil water repellency index (RI). There was strong variability in RI values between the infiltrometer methods. The mean RI values from the mini infiltrometers were higher than from the standard infiltrometer (9.61 and 3.46, respectively). The variability within sites dominated the variability in RI for the two methods. Despite these obvious trends, RI values between infiltrometer sizes were statistically different for only two individual sites. Increasing the number of sampling points in the second field season did not reduce the variability. The simpler, less expensive mini infiltrometer is as effective as the standard infiltrometer in measuring soil water repellency. This will enable more efficient and extensive monitoring of soil water repellency in reclaimed and undisturbed sites in the AOSR. Soil water repellency of reclaimed and undisturbed sites was investigated in situ using RI, the water droplet penetration time (WDPT) test, and the molarity of ethanol droplet (MED) test. These measures showed similar trends. Variability in soil water repellency was high at both reclaimed and undisturbed sites. The average RI value for the surface of reclaimed sites was higher than that of the subsurface at reclaimed sites; however, there were no statistical differences between RI values of surface reclaimed and undisturbed sites (P =0.213) due to high spatial variability. The critical water content (CWC) of reclamation materials was determined by measuring the contact angle (CA) and WDPT. Generally, CA and WDPT were inversely related to water content, though variability was high and the relationship between water content was weak. The clearest relationship between water repellency and water content was present for the mineral soil samples. Reclaimed mineral soil was generally wettable above gravimetric water contents of 5-10 %, while the coarse textured tarball affected materials were only subcritically water repellent. There was no relationship between water repellency and water content for peat and LFH. The degree of water repellency was statistically higher for peat materials with increasing decomposition levels. The average WDPT was 44, 128 and 217 s for fibric, mesic, and humic peat, respectively. With careful management and monitoring, water repellency may not be a major limitation to reclamation success. The mini tension infiltrometer is an effective method for monitoring soil water repellency in the AOSR.
3

Erosion Processes and Control

Garcia-Chevesich, Pablo Andres January 2009 (has links)
This dissertation represents a unique contribution to the Spanish literature of soil erosion. The author of this document has written and published "Procesos y control de la erosion", a textbook about the engineering of soil erosion processes and the design of the most up-to-date methods and products used for erosion control. The text has been presented in Appendix A.Besides the above, the author of this dissertation is an active committee member at the International Erosion Control Association (IECA), specifically the International Development and the SOIL Fund programs. IECA members are drawn from individuals and erosion control business of different sizes. However, there was a lack of knowledge within IECA members about the formation of post-fire water repellent layers. For instance, Appendix B is represented by an article written by the author of this document, published in Environmental Connection (Volume 2, Issue 3), on July of 2008. The article gives a general description of what post-fire water repellency is, how is it formed, what factors affect it, its consequences on soil erosion, and how to control soil erosion on an efficient way when such a layer has been formed as a consequence of fire.Finally, Appendix C is a research paper in process of submission to the International Journal of Wildland Fire, about the formation of post-fire water repellent layers on Chilean Monterrey pine plantations. Since water repellent layers following wildfires have never been documented on Chilean soils, the need for such a publication is urgent, because Chilean land managers have been ignorant of such phenomenon.
4

Measurement of Fine Spatial Scale Ecohydrologic Gradients in a Pinyon-Juniper Ecosystem

Madsen, Matthew David 01 December 2008 (has links)
With the dramatic expansion of pinyon-juniper woodlands over the last century, improved understanding of how these woodlands modify infiltration properties is needed, in order for land managers to make informed decisions on how to best manage their specific resources. However, current methods for measuring soil infiltration are often limited by low sample sizes and high experimental error, due to constraints associated with remote, non agricultural settings. This thesis first presents a scheme for automating and calibrating two commercially available infiltrometers, which allows collection of a large number of precise unsaturated infiltration measurements in a relatively short period of time. Secondly, a new method to precisely determine saturated hydraulic conductivity from small intact soil cores collected in the field is demonstrated. This method removes bias due to measurement error using a multiple head linear regression approach. Finally, hundreds of fine spatial scale measurements of soil sorptivity, unsaturated hydraulic conductivity, saturated hydraulic conductivity, soil water content, and other soil descriptive measurements along radial line transects extending out from the trunk of juniper (Juniperus osteosperma) and pinyon pine (Pinus edulis) trees. Within the subcanopy of these trees, interactions among litter material, root distributions, and hydrophobic soil significantly influence ecohydrologic properties by limiting and redirecting infiltration below the soil surface. Consequently, hydrophobicity appears to be a mechanism that promotes survival of woody vegetation in arid environments, through decreasing evaporation rates from the soil surface. We further demonstrate how differences in unsaturated infiltration and soil water content between the subcanopy and intercanopy zones are not discrete. Unsaturated infiltration was significantly lower within the subcanopy than in the intercanopy, and increased by eight-fold across a gradient extending outward from near the edge of the canopy to approximately two times the canopy radius. This gradient was not strongly related to soil moisture. In the intercanopy, increasing structural development of biological soil crust cover beyond this gradient was positivity correlated with infiltration capacity. Consequently, these results indicate that the spatial location of the trees should be considered in the assessment and modeling of woody plant and biological soil crust influence on infiltration capacity in a pinyon-juniper ecosystem.
5

Hydrophobic Coating on Cellulosic Textile Material by Betulin and a Betulin Based Polymer

Huang, Tianxiao January 2016 (has links)
Betulin is a naturally abundant compound in the outer bark of birch and can be easily obtained by solvent extraction. Herein, solutions of betulin were used to treat cellulosic textile fibers and improve their water repellency. Cotton fabrics impregnated in a 7.5 g L-1 solution of betulin in ethanol showed the highest water contact angle of about 153° while the impregnation in a 3.75 g L-1 solution resulted in a close effect. A terephthaloyl chloride-betulin copolymer was synthesized and dissolved in tetrahydrofuran to afford a solution with a concentration of 3.75 g L-1. The cotton fabric impregnated in this solution showed a water contact angle of 150°. Changes in morphology of the cellulose fibers before and after the treatment were observed by scanning electron microscopy, and the water repellency was measured by a standard spray test. The marketing strategy of the potential product, which will be developed based on this technique, was discussed.
6

Wildfire Impacts on Ecosystem Resources: Case Studies in Arizona's Ponderosa Pine Forest Following the Rodeo-Chediski Wildfire of 2002

Stropki, Cody Lee January 2011 (has links)
The Rodeo-Chediski Wildfire the largest in Arizona's history at the time of burning damaged and disrupted ecosystems resources and functioning in a largely mosaic pattern throughout the ponderosa pine (Pinus Ponderosa) forests exposed to the burn. Impacts of this wildfire on ecosystems resources and functioning were studied from shortly after the cessation of the wildfire in late summer of 2002 through the spring of 2007 on two previously instrumented watersheds located on sandstone derived soils within the burn. One watershed was burned by a high severity (stand-replacing fire), while the other watershed burned in a low severity (stand-modifying) fire. This dissertation focuses on the effects fire severity had on watersheds resources and functioning in terms of the tree overstories, herbaceous understories, large and small mammals, avifauna, hydrologic functioning, soil water repellency, hillslope soil movement, and fuel loadings. The results of these studies indicated the cumulative impacts incurred to ecosystem resources, hydrologic functioning, and flammable fuels were much greater on the watershed exposed to the high severity (stand-replacing) fire. It is anticipated that the overall ecological and hydrologic function on the watershed burned by a high severity will not approach pre-fire conditions for many years. The watershed burned at a low severity, however, was approaching pre-fire conditions nearly five years after fire and is expected to be recovered within the next few years.
7

Remediation of Soil Hydrophobicity on a Coastal USGA Sand-Based Golf Green

Thompson, Troy David 01 June 2010 (has links)
Managing soil hydrophobicity caused by localized dry spots (LDS) on sand based golf greens has become one of the greatest challenges for golf course superintendents and managers, especially as water restrictions intensify. The purpose of this study was to evaluate the effectiveness of thirteen soil surfactants in eliminating LDS and in maximizing root zone soil moisture on a sand based USGA golf green located on the California Central Coast. Potential water repellency of air dried cores (measured utilizing the water droplet penetration time (WDPT) method), phytotoxicity, and climate were analyzed during two experimental trials. Phytotoxicity data was collected for Trial I using visual quality ratings and for Trial II using a chlorophyll meter. Phytotoxicity decreased during Trial I. Differences in phytotoxicity as measured using chlorophyll index were not at all significant during Trial II (p = 1). Ten of the thirteen wetting agent treatments significantly (p < 0.001) decreased soil hydrophobicity compared with the other wetting agent treated plots and the non-treated control. More frequent application of Cascade Plus resulted in a more significant reduction in soil hydrophobicity. Increasing the application rates also resulted in the reduction of soil hydrophobicity. Wetting agent treatment 6-CP(10day) maintained the highest volumetric water content (VWC) but treatment 13-2079337 maintained the highest levels for wetting agents treated monthly.
8

Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

Blume, Theresa, Zehe, Erwin, Bronstert, Axel January 2009 (has links)
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeterscale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a datascarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
9

THE EFFECT OF SOIL WATER REPELLENCY AND FUNGAL HYDROPHOBICITY ON SOIL WATER DYNAMICS IN THE ATHABASCA OIL SANDS

2014 March 1900 (has links)
Surface mining of the Athabasca Oil Sands of Canada is occurring at an unparalleled rate resulting in large scale disturbances over vast areas. Soil water availability for plants is one of the key issues faced when reclaiming the landscape. A factor which limits the soil water availability is soil water repellency (SWR). Soil water repellency is found on both natural and disturbed sites in this region and can cause reduced infiltration, reduced soil water storage, enhanced runoff, increased preferential flow, and reduced ecosystem productivity. Effective characterization of SWR, determination of the causes of SWR and understanding how it affects soil pores and water flow are important for environmental management. The main objective of this study is to examine the effect of SWR and fungal hydrophobicity on soil water dynamics in Athabasca Oil Sands. This was accomplished by determining the relationship between the measurement of severity and persistence of SWR and the critical water content (CWC) where SWR is greatest between different soils in the region. Examining how the water conducting porosity and soil pores are affected by SWR. Developing methods to quantify fungal strains that cause SWR and testing of these fungal strains for their ability to alter the SWR and infiltration into soil. Results show that a high severity (Contact angle) of repellency does not necessarily denote long persistence (Water Drop Penetration Time) or high CWC in soils from the region. A high severity of SWR in larger diameter pores decreased the water conducting porosity due to the larger pore contribution to the total liquid flux. The modified microscopy approach and the alcohol percentage test (APT) resulted in improved characterization of fungal hydrophobicity. Fungal strains were classified as hydrophilic, hydrophobic and chrono-amphililic based on their surface properties from these measurements. The surface property of selected fungi strains can alter the SWR in both a repellent and wettable soil and can also change the water infiltration rate. This research highlights the importance of characterization of SWR, the effects on water flow, and how fungal hydrophobicity can alter the SWR and infiltration. This will aid in improving our understanding of SWR and improve remediation efforts on water repellent soils in the Athabasca Oil Sands region.
10

Betulin-modified cellulosic textile fibers with improved water repellency, hydrophobicity and antibacterial properties

Huang, Tianxiao January 2019 (has links)
Textiles made from natural sources, such as cotton and flax, have advantages over those made of synthetic fibers in terms of sustainability. Unlike major synthetic fibers that have a negative impact on the environment due to poor biodegradability, cotton cellulose is a renewable material.Cotton cellulose fibers exhibit various attractive characteristics such as softness and inexpensiveness. Cellulosic textiles can be easily wetted, since the structure contains a large amount of hydrophilic hydroxyl groups, and when water repellency is needed, this is a disadvantage. Currently, paraffin waxes or fluorinated silanes are used to achieve hydrophobicity, but this contradicts the concept of green chemistry since these chemicals are not biodegradable. The use of bio-based materials like forest residues or side-streams from forest product industries might be a good alternative, since this not only decreases the pressure on the environment but can also increase the value of these renewable resources.Betulin is a hydrophobic extractive present in the outer bark of birch trees (Betula verrucosa). Nowadays, the birch bark containing betulin generated in the paper industry is disposed of by incineration as a solid fuel to provide energy, but this application is not highly valuable and this motivates us to see whether betulin can be used as a hydrophobe to prepare waterproof cellulosic textiles. Methods of dip-coating, film compression molding and grafting were performed to build “betulin-cellulosic textile system” to render the textile with hydrophobicity and other functions. The textile impregnated in a solution of betulin-based copolymer exhibited a contact angle of 151°, which indicated that superhydrophobicity can be reached. AATCC water spray test results showed that cellulosic textile coated with betulin-based film had a water repellency of 80, which is the third highest class according to the rating standards. Betulin-grafted textiles were also prepared and showed a static water contact angle of 136°, and an antibacterial property with a bacterial removal of 99%.This thesis proposes that betulin can be used as a green alternative in functional material preparation. By developing betulin, a more value-added application rather than incineration can be achieved. / <p>QC 20190205</p>

Page generated in 0.0889 seconds