Spelling suggestions: "subject:"water repellency"" "subject:"water repellence""
1 |
Investigation of water repellency and critical water content in undisturbed and reclaimed soils from the Athabasca Oil Sands Region of Alberta, CanadaHunter, Amanda Evelyn 13 July 2011
Ecosystems are disturbed to extract synthetic crude oil from the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada. Successful reclamation of mined oil sands sites depends on maximizing water storage and minimizing the potential for erosion. Soil water repellency in the AOSR affects undisturbed sites and consequently reclamation materials. Extreme water repellency may lead to low infiltration rates and hinder reclamation. There is a lack of information about the naturally occurring and pre-existing levels of soil water repellency in the AOSR. Thus, questions arise about the degree of naturally occurring water repellency and the potential for severe water repellency in reclamation soils.
Studies were conducted on nine sites in the AOSR in the summers of 2008 and 2009. A range of undisturbed and reclaimed sites, as well as mineral and organic reclamation materials were examined. Five undisturbed Jack Pine stands (classified as A ecosites), four reclaimed sites and reclamation materials including mineral soil, peat and leaf and lichen covering the forest floor (LFH) were studied. For a comparison of methods, one grasslands site in central Saskatchewan was included.
Mini and standard tension infiltrometers were compared as a means of measuring soil water repellency index (RI). There was strong variability in RI values between the infiltrometer methods. The mean RI values from the mini infiltrometers were higher than from the standard infiltrometer (9.61 and 3.46, respectively). The variability within sites dominated the variability in RI for the two methods. Despite these obvious trends, RI values between infiltrometer sizes were statistically different for only two individual sites. Increasing the number of sampling points in the second field season did not reduce the variability. The simpler, less expensive mini infiltrometer is as effective as the standard infiltrometer in measuring soil water repellency. This will enable more efficient and extensive monitoring of soil water repellency in reclaimed and undisturbed sites in the AOSR.
Soil water repellency of reclaimed and undisturbed sites was investigated in situ using RI, the water droplet penetration time (WDPT) test, and the molarity of ethanol droplet (MED) test. These measures showed similar trends. Variability in soil water repellency was high at both reclaimed and undisturbed sites. The average RI value for the surface of reclaimed sites was higher than that of the subsurface at reclaimed sites; however, there were no statistical differences between RI values of surface reclaimed and undisturbed sites (P =0.213) due to high spatial variability.
The critical water content (CWC) of reclamation materials was determined by measuring the contact angle (CA) and WDPT. Generally, CA and WDPT were inversely related to water content, though variability was high and the relationship between water content was weak. The clearest relationship between water repellency and water content was present for the mineral soil samples. Reclaimed mineral soil was generally wettable above gravimetric water contents of 5-10 %, while the coarse textured tarball affected materials were only subcritically water repellent. There was no relationship between water repellency and water content for peat and LFH. The degree of water repellency was statistically higher for peat materials with increasing decomposition levels. The average WDPT was 44, 128 and 217 s for fibric, mesic, and humic peat, respectively.
With careful management and monitoring, water repellency may not be a major limitation to reclamation success. The mini tension infiltrometer is an effective method for monitoring soil water repellency in the AOSR.
|
2 |
Investigation of water repellency and critical water content in undisturbed and reclaimed soils from the Athabasca Oil Sands Region of Alberta, CanadaHunter, Amanda Evelyn 13 July 2011 (has links)
Ecosystems are disturbed to extract synthetic crude oil from the Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada. Successful reclamation of mined oil sands sites depends on maximizing water storage and minimizing the potential for erosion. Soil water repellency in the AOSR affects undisturbed sites and consequently reclamation materials. Extreme water repellency may lead to low infiltration rates and hinder reclamation. There is a lack of information about the naturally occurring and pre-existing levels of soil water repellency in the AOSR. Thus, questions arise about the degree of naturally occurring water repellency and the potential for severe water repellency in reclamation soils.
Studies were conducted on nine sites in the AOSR in the summers of 2008 and 2009. A range of undisturbed and reclaimed sites, as well as mineral and organic reclamation materials were examined. Five undisturbed Jack Pine stands (classified as A ecosites), four reclaimed sites and reclamation materials including mineral soil, peat and leaf and lichen covering the forest floor (LFH) were studied. For a comparison of methods, one grasslands site in central Saskatchewan was included.
Mini and standard tension infiltrometers were compared as a means of measuring soil water repellency index (RI). There was strong variability in RI values between the infiltrometer methods. The mean RI values from the mini infiltrometers were higher than from the standard infiltrometer (9.61 and 3.46, respectively). The variability within sites dominated the variability in RI for the two methods. Despite these obvious trends, RI values between infiltrometer sizes were statistically different for only two individual sites. Increasing the number of sampling points in the second field season did not reduce the variability. The simpler, less expensive mini infiltrometer is as effective as the standard infiltrometer in measuring soil water repellency. This will enable more efficient and extensive monitoring of soil water repellency in reclaimed and undisturbed sites in the AOSR.
Soil water repellency of reclaimed and undisturbed sites was investigated in situ using RI, the water droplet penetration time (WDPT) test, and the molarity of ethanol droplet (MED) test. These measures showed similar trends. Variability in soil water repellency was high at both reclaimed and undisturbed sites. The average RI value for the surface of reclaimed sites was higher than that of the subsurface at reclaimed sites; however, there were no statistical differences between RI values of surface reclaimed and undisturbed sites (P =0.213) due to high spatial variability.
The critical water content (CWC) of reclamation materials was determined by measuring the contact angle (CA) and WDPT. Generally, CA and WDPT were inversely related to water content, though variability was high and the relationship between water content was weak. The clearest relationship between water repellency and water content was present for the mineral soil samples. Reclaimed mineral soil was generally wettable above gravimetric water contents of 5-10 %, while the coarse textured tarball affected materials were only subcritically water repellent. There was no relationship between water repellency and water content for peat and LFH. The degree of water repellency was statistically higher for peat materials with increasing decomposition levels. The average WDPT was 44, 128 and 217 s for fibric, mesic, and humic peat, respectively.
With careful management and monitoring, water repellency may not be a major limitation to reclamation success. The mini tension infiltrometer is an effective method for monitoring soil water repellency in the AOSR.
|
3 |
Erosion Processes and ControlGarcia-Chevesich, Pablo Andres January 2009 (has links)
This dissertation represents a unique contribution to the Spanish literature of soil erosion. The author of this document has written and published "Procesos y control de la erosion", a textbook about the engineering of soil erosion processes and the design of the most up-to-date methods and products used for erosion control. The text has been presented in Appendix A.Besides the above, the author of this dissertation is an active committee member at the International Erosion Control Association (IECA), specifically the International Development and the SOIL Fund programs. IECA members are drawn from individuals and erosion control business of different sizes. However, there was a lack of knowledge within IECA members about the formation of post-fire water repellent layers. For instance, Appendix B is represented by an article written by the author of this document, published in Environmental Connection (Volume 2, Issue 3), on July of 2008. The article gives a general description of what post-fire water repellency is, how is it formed, what factors affect it, its consequences on soil erosion, and how to control soil erosion on an efficient way when such a layer has been formed as a consequence of fire.Finally, Appendix C is a research paper in process of submission to the International Journal of Wildland Fire, about the formation of post-fire water repellent layers on Chilean Monterrey pine plantations. Since water repellent layers following wildfires have never been documented on Chilean soils, the need for such a publication is urgent, because Chilean land managers have been ignorant of such phenomenon.
|
4 |
Measurement of Fine Spatial Scale Ecohydrologic Gradients in a Pinyon-Juniper EcosystemMadsen, Matthew David 01 December 2008 (has links)
With the dramatic expansion of pinyon-juniper woodlands over the last century, improved understanding of how these woodlands modify infiltration properties is needed, in order for land managers to make informed decisions on how to best manage their specific resources. However, current methods for measuring soil infiltration are often limited by low sample sizes and high experimental error, due to constraints associated with remote, non agricultural settings. This thesis first presents a scheme for automating and calibrating two commercially available infiltrometers, which allows collection of a large number of precise unsaturated infiltration measurements in a relatively short period of time. Secondly, a new method to precisely determine saturated hydraulic conductivity from small intact soil cores collected in the field is demonstrated. This method removes bias due to measurement error using a multiple head linear regression approach. Finally, hundreds of fine spatial scale measurements of soil sorptivity, unsaturated hydraulic conductivity, saturated hydraulic conductivity, soil water content, and other soil descriptive measurements along radial line transects extending out from the trunk of juniper (Juniperus osteosperma) and pinyon pine (Pinus edulis) trees. Within the subcanopy of these trees, interactions among litter material, root distributions, and hydrophobic soil significantly influence ecohydrologic properties by limiting and redirecting infiltration below the soil surface. Consequently, hydrophobicity appears to be a mechanism that promotes survival of woody vegetation in arid environments, through decreasing evaporation rates from the soil surface. We further demonstrate how differences in unsaturated infiltration and soil water content between the subcanopy and intercanopy zones are not discrete. Unsaturated infiltration was significantly lower within the subcanopy than in the intercanopy, and increased by eight-fold across a gradient extending outward from near the edge of the canopy to approximately two times the canopy radius. This gradient was not strongly related to soil moisture. In the intercanopy, increasing structural development of biological soil crust cover beyond this gradient was positivity correlated with infiltration capacity. Consequently, these results indicate that the spatial location of the trees should be considered in the assessment and modeling of woody plant and biological soil crust influence on infiltration capacity in a pinyon-juniper ecosystem.
|
5 |
Characteristics of bloodstains on waterproof fabricsHolt, Ashley D. 31 October 2024 (has links)
Blood is a biological fluid frequently encountered at crime scenes and can be an important source of information regarding the events that occurred and individuals involved. Blood evidence can be the subject of bloodstain pattern analysis (BPA) to ascertain the details of a blood shedding event as well as deoxyribonucleic acid (DNA) analysis to identify potential individuals that were present at the event. BPA becomes more complicated when bloodstains are found on clothing items due to the wide range of fabrics and their inherent properties, along with a range of factors, including but not limited to, treatments, effects of laundering, and wear. The interaction between fabrics and bloodstains has not been wholly explored in the forensic literature. Additionally, most forensic research on bloodstain and fabric interactions have been conducted on laundered, absorbent fabrics. Waterproof fabrics are designed to repel water and protect underlying surfaces from the effects of weather such as rain and snow, often having very different properties from other fabrics.
In this research, the characteristics of bloodstains deposited on waterproof and absorbent fabrics were assessed, as well as the ability to chemically detect the presence of blood after physical alteration of the stains. Six unlaundered, waterproof fabrics with different waterproof coatings, fiber content, and other properties in addition to three different types of absorbent fabrics were cut into swatches and utilized for this study. Whole human blood was used to create a variety of bloodstain types that are often observed at a crime scene: drip stains at two different impact angles, spatter stains, and transfer stains. Ten replicates were completed for all nine fabrics and each bloodstain type, for a total of 360 bloodstains. The dried bloodstains were photographed with a handheld digital camera and a digital camera mounted on a stereo microscope to better visualize the interactions between the blood and fibers. The bloodstained fabric swatches were then physically manipulated to assess the persistence of the stains and the ability of a presumptive blood assay to detect the remaining traces.
Four mechanisms of blood deposition created bloodstains with different characteristics. Differences were observed among the variety of waterproof fabrics as well as the different absorbent fabrics. Bloodstains on the waterproof fabrics appeared to rest on the surface with very little wicking into the fabric. The largest drip stain diameters were observed on the cotton t-shirt, implying that the cotton t-shirt had the greatest wicking ability. Pearling of the blood droplets was observed on the waterproof fabrics used in this experiment, but appeared to occur irrespective of the type of waterproof finish applied. The drip stains on the nylon fabrics appeared flatter and frequently caved in at the center, even though the waterproof finishes were the same as two of the polyester fabrics, which produced more spherical drip stains. The contrasting appearances of the drip stains on cotton jersey and the cotton t-shirt is likely due to the presence of 5% spandex in the cotton jersey fabric. Bloodstain characteristics thus appeared to be influenced by fiber content, fabric structure and thickness, and the presence of waterproofing surface treatments, as well as the blood deposition mechanism.
The bloodstains on absorbent fabrics did not separate greatly from the fabric after alteration and appeared largely unchanged. The bloodstains were dislocated from the waterproof fabrics to varying extents, but all greater than the absorbent fabrics. Traces of the bloodstains were frequently observed under the stereo microscope when the pre-existing stains were not observed macroscopically, indicating that a microscopic examination may be a useful tool in the forensic laboratory. The altered drip stains at both impact angles were overwhelmingly detected by the presumptive Kastle-Meyer blood test, with only a single instance of a negative result. In contrast, test results were more evenly split among the spatter stains on waterproof fabrics and were less likely to produce positive test results. Positive test results were obtained for the majority of altered stains, including stains that were not visible to the naked eye, indicating that a presumptive blood test may be useful for detecting latent bloodstains on clothing items such as the ones analyzed in this research.
|
6 |
Hydrophobic Coating on Cellulosic Textile Material by Betulin and a Betulin Based PolymerHuang, Tianxiao January 2016 (has links)
Betulin is a naturally abundant compound in the outer bark of birch and can be easily obtained by solvent extraction. Herein, solutions of betulin were used to treat cellulosic textile fibers and improve their water repellency. Cotton fabrics impregnated in a 7.5 g L-1 solution of betulin in ethanol showed the highest water contact angle of about 153° while the impregnation in a 3.75 g L-1 solution resulted in a close effect. A terephthaloyl chloride-betulin copolymer was synthesized and dissolved in tetrahydrofuran to afford a solution with a concentration of 3.75 g L-1. The cotton fabric impregnated in this solution showed a water contact angle of 150°. Changes in morphology of the cellulose fibers before and after the treatment were observed by scanning electron microscopy, and the water repellency was measured by a standard spray test. The marketing strategy of the potential product, which will be developed based on this technique, was discussed.
|
7 |
Wildfire Impacts on Ecosystem Resources: Case Studies in Arizona's Ponderosa Pine Forest Following the Rodeo-Chediski Wildfire of 2002Stropki, Cody Lee January 2011 (has links)
The Rodeo-Chediski Wildfire the largest in Arizona's history at the time of burning damaged and disrupted ecosystems resources and functioning in a largely mosaic pattern throughout the ponderosa pine (Pinus Ponderosa) forests exposed to the burn. Impacts of this wildfire on ecosystems resources and functioning were studied from shortly after the cessation of the wildfire in late summer of 2002 through the spring of 2007 on two previously instrumented watersheds located on sandstone derived soils within the burn. One watershed was burned by a high severity (stand-replacing fire), while the other watershed burned in a low severity (stand-modifying) fire. This dissertation focuses on the effects fire severity had on watersheds resources and functioning in terms of the tree overstories, herbaceous understories, large and small mammals, avifauna, hydrologic functioning, soil water repellency, hillslope soil movement, and fuel loadings. The results of these studies indicated the cumulative impacts incurred to ecosystem resources, hydrologic functioning, and flammable fuels were much greater on the watershed exposed to the high severity (stand-replacing) fire. It is anticipated that the overall ecological and hydrologic function on the watershed burned by a high severity will not approach pre-fire conditions for many years. The watershed burned at a low severity, however, was approaching pre-fire conditions nearly five years after fire and is expected to be recovered within the next few years.
|
8 |
Remediation of Soil Hydrophobicity on a Coastal USGA Sand-Based Golf GreenThompson, Troy David 01 June 2010 (has links)
Managing soil hydrophobicity caused by localized dry spots (LDS) on sand based golf greens has become one of the greatest challenges for golf course superintendents and managers, especially as water restrictions intensify. The purpose of this study was to evaluate the effectiveness of thirteen soil surfactants in eliminating LDS and in maximizing root zone soil moisture on a sand based USGA golf green located on the California Central Coast. Potential water repellency of air dried cores (measured utilizing the water droplet penetration time (WDPT) method), phytotoxicity, and climate were analyzed during two experimental trials. Phytotoxicity data was collected for Trial I using visual quality ratings and for Trial II using a chlorophyll meter. Phytotoxicity decreased during Trial I. Differences in phytotoxicity as measured using chlorophyll index were not at all significant during Trial II (p = 1). Ten of the thirteen wetting agent treatments significantly (p < 0.001) decreased soil hydrophobicity compared with the other wetting agent treated plots and the non-treated control. More frequent application of Cascade Plus resulted in a more significant reduction in soil hydrophobicity. Increasing the application rates also resulted in the reduction of soil hydrophobicity. Wetting agent treatment 6-CP(10day) maintained the highest volumetric water content (VWC) but treatment 13-2079337 maintained the highest levels for wetting agents treated monthly.
|
9 |
Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processesBlume, Theresa, Zehe, Erwin, Bronstert, Axel January 2009 (has links)
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes,
especially in data scarce or previously ungauged catchments.
The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture
response allows for visualization of flow processes in the unsaturated
zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope
scale). Annual dynamics of soil moisture and decimeterscale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a datascarce
catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation
for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
|
10 |
THE EFFECT OF SOIL WATER REPELLENCY AND FUNGAL HYDROPHOBICITY ON SOIL WATER DYNAMICS IN THE ATHABASCA OIL SANDS2014 March 1900 (has links)
Surface mining of the Athabasca Oil Sands of Canada is occurring at an unparalleled rate resulting in large scale disturbances over vast areas. Soil water availability for plants is one of the key issues faced when reclaiming the landscape. A factor which limits the soil water availability is soil water repellency (SWR). Soil water repellency is found on both natural and disturbed sites in this region and can cause reduced infiltration, reduced soil water storage, enhanced runoff, increased preferential flow, and reduced ecosystem productivity. Effective characterization of SWR, determination of the causes of SWR and understanding how it affects soil pores and water flow are important for environmental management.
The main objective of this study is to examine the effect of SWR and fungal hydrophobicity on soil water dynamics in Athabasca Oil Sands. This was accomplished by determining the relationship between the measurement of severity and persistence of SWR and the critical water content (CWC) where SWR is greatest between different soils in the region. Examining how the water conducting porosity and soil pores are affected by SWR. Developing methods to quantify fungal strains that cause SWR and testing of these fungal strains for their ability to alter the SWR and infiltration into soil.
Results show that a high severity (Contact angle) of repellency does not necessarily denote long persistence (Water Drop Penetration Time) or high CWC in soils from the region. A high severity of SWR in larger diameter pores decreased the water conducting porosity due to the larger pore contribution to the total liquid flux. The modified microscopy approach and the alcohol percentage test (APT) resulted in improved characterization of fungal hydrophobicity. Fungal strains were classified as hydrophilic, hydrophobic and chrono-amphililic based on their surface properties from these measurements. The surface property of selected fungi strains can alter the SWR in both a repellent and wettable soil and can also change the water infiltration rate.
This research highlights the importance of characterization of SWR, the effects on water flow, and how fungal hydrophobicity can alter the SWR and infiltration. This will aid in improving our understanding of SWR and improve remediation efforts on water repellent soils in the Athabasca Oil Sands region.
|
Page generated in 0.1898 seconds