• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 2
  • Tagged with
  • 40
  • 40
  • 34
  • 29
  • 8
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Water allocation and the sustainability of dairying in the upper Waitaki river basin : a thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Environmental Studies /

Addison, Vicki. January 2009 (has links)
Thesis (M.Env.Stud.)--Victoria University of Wellington, 2009. / Includes bibliographical references.
22

The Rueter-Hess dam and reservoir project: : a question of sustainable water /

Grimm, Craig C. January 2005 (has links)
Thesis--University College of Denver, 2005. / Includes bibliographical references (p. 229-236) and abstract. Also available on the Internet.
23

Water allocation and development in Wisconsin

Schmid, A. Allan January 1959 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1959. / Typescript. Abstracted in Dissertation abstracts, v. 20 (1959) no. 3, p. 910. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 307-315).
24

San Francisco-Hetch Hetchy Valley connection /

Davies, Leslie T. January 1900 (has links)
Thesis (M.A.)--Humboldt State University, 2006. / Includes bibliographical references (leaves 65-67). Also available via Humboldt Digital Scholar.
25

Multi-criteria decision-making for water resource management in the Berg Water Management Area /

De Lange, Willem J. January 2006 (has links)
Dissertation (PhD)--University of Stellenbosch, 2006. / Bibliography. Also available via the Internet.
26

Towards Sustainable Use of Groundwater Resources: Aquifer 23, La Mancha-Spain.

Doncel Fuentes, Pablo January 2015 (has links)
La Mancha Plain lies in the core of Spain and partially stretches over the Guadiana River Upper Basin (UGB), is one of the most arid regions of the Iberian Peninsula, indeed “La Mancha” in Arabic means “the dry”, and also houses a vast Aquifer that has supported the related numerous marshlands and hydro-ecosystems in harmony with the human development till the 1970s, when the “Agrarian Green Revolution” commenced. Land reclamation over River and lagoon beds joined to the irrigation implementation of more than 150.000 Ha have badly bled the water resources to the maximum usable limit, lowering the phreatic table down to 60 meters, provoking a serious ecological damage for the 25.000 Ha of wetlands highly dependent on shallow phreatic levels. Recently, Nature granted the wettest period ever registered in the area (2009-2012) which caused an incredible natural replenishment of that Aquifer deficit. However, even though several costly plans and policies have been undertaken, it is still pending to effectively control the extractions, to manage the Aquifer within a portion allowing a certain continuous upwelling to enliven the Guadiana River real spring, and also, to adjust the essential agriculture sector to the environmental conditions and carrying capacity of the system.
27

Quantifying The Linkages Between US' Water Resources And Its Production Of Food, Energy, And Water

Ao, Yufei 25 May 2023 (has links)
Water is a critical resource that is essential for human well-being and economic development. Many regions around the world face ongoing water scarcity and competition over water resources. Climate change, other drastic social changes, and population and economic growth can significantly impact the supply and consumption of water. There has been an increasing body of research focusing on the Food-Energy-Water (FEW) nexus. There is a mismatch between the spatial resolution of data availability and the resolution that water resources follow. Lack of quality sub-county water data also makes the research of micro-level food-water dynamics difficult if not impossible. These challenges pose obstacles to the further understanding of water scarcity in the context of the FEW nexus and leaves critical gaps in the research of the nexus. In this dissertation I asked and answered the question: how do socio-economic forces shape localized groundwater depletion and surface water scarcity within the United States at the field and basin scale? Specifically, I tested whether irrigated farm size leads to reduction in groundwater application per unit area and whether an increase in the annual depletion in the underlying aquifer storage increases the probability of an irrigated land transfer, with a Kansas field level dataset and an econometrics approach. I estimated the FEW production and the water footprint of FEW production in every US watershed and compare the water footprint of production against their water scarcity. Then the groundwater reserves and dam storage in watersheds were examined as the buffers for the watersheds' FEW production against water shortages. I mapped the transfers of FEW goods and services and both the virtual and physical water flows from watersheds to US cities. The transportation infrastructure and other infrastructure that supports the FEW transfers are analyzed in terms of their contributions to the movement of FEW goods. This dissertation improves our understanding of how broad structural changes within the agricultural industry are interconnected with the overexploitation of groundwater resources. It is the first study of water footprint accounting with the most recent input data for the whole US food-energy-water system at the watershed level and includes an analysis of cities' infrastructure reliance for food-energy-water transfers and infrastructure as buffers. The transfers of virtual water and physical water were compared. The resulting data and findings from the novel data synthesis will provide insights for consumers, food companies, and other decision-makers at various levels on their connection to water resources in non-local areas. The outcomes of this dissertation will also improve our ability to analyze drivers and solutions to local small-scale watershed water scarcity challenges and allow a quantifiable basis for policy support in the water resources management domain and beyond. / Doctor of Philosophy / Water is an important resource for humans and the economy, but many regions around the world face ongoing water shortages and competition over the limited water resources. The Food-Energy-Water (FEW) nexus has gained increasing attention as a framework for understanding the complex relationships between water, food, and energy systems. However, research in this area has faced challenges in data availability and data resolution. This dissertation addresses these challenges while exploring how socio-economic forces shape localized groundwater depletion and surface water scarcity within the United States at the field, basin, and city scales. The author tests hypotheses related to irrigated farm size, irrigation water use, groundwater depletion, and the irrigated land transfers. The author estimates the FEW production and water footprint of production in every US watershed. The author also tracks and analyzes the transfers of FEW goods and services and embedded water footprint. Infrastructure's role in delivering FEW goods and buffering against water shortages were also examined. Overall, this dissertation provides insights into the connections between water resources and broad structural changes within the food system, and offers a novel data synthesis that can facilitate the understanding of connections between production and consumption of FEW at various spatial scales and water resources in local and non-local areas. The findings will also help analyze the drivers and solutions to local small-scale watershed's water scarcity challenges, and provide a quantifiable basis for policy support in the water resources management domain and beyond.
28

A hydroinformatic approach to basin/coastal water management /

Naoum, Sherif. Tsanis, Ioannis K., January 2003 (has links)
Thesis (Ph.D.)--McMaster University, 2003. / Advisor: Ioannis Tsanis. CD-ROM contains Appendices A-H (51 p.). Includes bibliographical references (leaves 297-307). Also available via World Wide Web.
29

An assessment of the companion modelling approach in a context of negotiating water allocation strategies : the case of the Kat River Valley, Eastern Cape, South Africa /

Gumede, Felicity Hlengiwe January 2008 (has links)
Thesis (M.Sc. (Geography)) - Rhodes University, 2008
30

Water management decentralization in rural Honduras /

Sano, Yoshiko. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 64-68). Also available on the World Wide Web.

Page generated in 0.1967 seconds