• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 66
  • 66
  • 29
  • 19
  • 17
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cylindrical Nanowires for Water Splitting and Spintronic Devices

Moreno Garcia, Julian 10 June 2021 (has links)
Energy enables basic and innovative services to reach a seemingly ever-growing population and when its generation costs are reduced or when its usage is optimized it has the greatest impact on the reduction of poverty. Furthermore, there is a pressing need to decouple energy generation from non-renewable and carbon-heavy sources which has led mayor economies to increase research efforts in these areas. This thesis discusses research on water oxidation using nanostructured iron oxide electrodes and current-induced magnetic domain wall motion in nickel/cobalt bi-segmented nanowires. These two fields may seem disparate at first glance, but are linked by such common theme: materials for energy, and more precisely, materials for energy conversion and economy. The work presented in this document aims also to reflect this theme by using widely available materials like iron and aluminum, and optimizing the methods to produce the final samples using the least resources possible. All samples were prepared by electroplating metals (iron, cobalt and nickel) into anodized alumina templates fabricated inhouse. For water oxidation, iron nanorods were integrated into an electrode and annealed in air, while nickel/cobalt nanowires were isolated and contacted individually to test for spintronics-related effects. Spintronic-based devices aim to reduce energy usage in nowadays microelectronic devices. The nanostructured iron oxide electrode showed its usefulness for water oxidation in a laboratory environment, making it an appropriate complement to other electrodes specially designed for water reduction in a photoelectrochemical cell. This two-electrode design, allows for hydrogen and oxygen to be produced at each electrode and therefore eases their separate collection for, e.g., fuel or fertilizers. On the other hand, this work presents one of the first experimental demonstration of current-induced domain wall motion in soft/hard cylindrical magnetic nanowires at zero applied external magnetic field. These kinds of experiments are expected to be the first of many which will allow researchers in the field to test for spintronic-relevant properties and interactions in cylindrical magnetic nanowires.
12

Application of Transition Metal Coordination for Energy Efficient Processes: Catalysis and Separation

Shrestha, Sweta January 2017 (has links)
No description available.
13

THE SYNTHESIS AND MODIFICATION OF 2D MATERIALS FOR APPLICATION IN WATER OXIDATION CATALYSIS

McKendry, Ian George January 2017 (has links)
The unifying goal of this work is the design of a heterogeneous catalyst that can facilitate the energy intensive oxygen evolution reaction (OER) in water splitting, considered one of the ‘holy grails’ in catalytic science. In order for this process to be industrially feasible, an efficient catalyst composed of first row transition metal based materials must be used. To accomplish this, existing systems must be studied in order to determine which properties are important and subsequent creation and modification of new systems based on lessons learned must be employed. Birnessite, a 2D layered manganese dioxide, comprises the majority of the effort. In the studies leading to this work, this material was primarily studied by mineralogists with the majority focusing on structural characterization. However, the material’s moderate activity toward performing the OER has revived interest. In this work, we look to determine important species, the role dopants play in activity, and the function of the interlayer and surface chemistry. From these findings, an enhanced, earth abundant OER catalyst will be designed. We determine that Mn3+ in the system plays and important role in producing a catalytic species with large oxygen production capabilities. By increasing the amount of Mn3+ in the system via a simple comproportionation reaction by exposing the Mn4+ to Mn2+ ion, we increase the total turnover of birnessite 50-fold. Additionally, the addition of dopants to the system , both within and between the sheets, has a positive effect on the activity of birnessite. In particular, incorporation of cobalt into the lattice of birnessite brings the activity level on par to that of precious metal oxide catalysts due to the cobalt offering a deeper electron acceptor than in birnessite alone. In conjunction with these studies, the role of the interlayer species and catalyst confinement has demonstrated the ability to greatly enhance a catalyst’s ability to perform the OER by ordering and orienting the water around the active confined catalyst. Combining confinement effects with the cobalt-doped birnessite sheets resulted in further enhancement in the material’s OER capabilities. This system mimics that of an enzyme where the cobalt-doped birnessite sheets facilitate greater electron-hole transfer to the interlayer active site, where the confinement effects enhance electron transfer kinetics and water organization for O-O bond formation. Additionally, metal chalcogenide OER catalysts were explored with mattagamite phase cobalt pertelluride. Through the work, we determine the formation of a Te-Co-O heterostructure as the catalytically active phase, where the metallic nature of the cobalt pertelluride facilitates charge mobility between the electrode and catalyst’s cobalt oxide surface functioning as the active OER species. / Chemistry
14

Functionalized Metal-Organic Frameworks for Water Oxidation Catalysis

Lin, Shaoyang 02 May 2019 (has links)
Increasing energy demand will not only aggravate global warming, but also cause fossil fuels shortage in the near future. Solar energy is an infinite green energy resource that can potentially satisfy our energy usage. By utilizing solar energy to drive reactions like water splitting, solar fuels system are able to produce valuable energy resource. Catalysts for water oxidation are the essential component of water splitting cells which have been intensively studied. As a solid state porous crystalline material with synthetic tunability, Metal-organic framework (MOF) is a promising platform for water oxidation catalysis due to its outstanding properties. Herein, we aimed to develop molecular catalysts incorporated MOF for water oxidation and study the reaction mechanism. Chapter 1 introduces the background of water oxidation and previous research on ruthenium nuclear water oxidation catalysts (WOCs). The reaction mechanism of binuclear and mononuclear ruthenium WOCs was briefly summarized. Opportunities for the design and the synthesis of MOF based WOCs were then discussed. Lastly, studies about MOF based WOCs were categorized based on the difference of the WOCs active site location in frameworks. Water oxidation catalyst [Ru(dcbpy)(tpy)OH2]2+ (RuTB) was incorporated into UiO-67 MOF (resulting materials denoted as RuTB-UiO-67) for chemical water oxidation in Chapter 2. Differences of catalytic reaction behavior between homogeneous RuTB and RuTB incorporated in MOF were examined. Based on MOF particle size dependent catalysis reaction experiments, in-MOF reactivity was anticipated to be primarily arose from redox hopping between RuTB active sites in the framework. In Chapter 3, RuTB-UiO-67 MOF thin films grown on conducting FTO substrate (RuTB-UiO-67/FTO) were synthesized to test their catalytic activity of electrochemical water oxidation. Electrochemical behavior of RuTB-UiO-67/FTO was found to be consistent with homogeneous RuTB by various electrochemistry study and in-situ X-ray absorption spectroscopy characterization. Scan-rate-dependent voltammetry study demonstrated the homogeneous distribution of electrochemical active sites throughout the MOF thin film. Diffusion controlled redox hopping was attributed to be the main charge transfer pathway during catalysis. In order to pursue photo-induced water splitting system, we further our study by investigating MOF based photoelectrochemical catalysis in Chapter 4. Photoelectrochemical alcohol oxidation was chosen as the preliminary-stage study towards the more challenging goal, photoelectrochemical water oxidation. Electron transfer processes of the photosensitizer ([Ru(bpy)2(dcbpy)]2+) and the catalyst (RuTB) doped UiO-67 MOF were investigated with transient absorption spectroscopy analysis. Finally, the role of redox hopping in electrocatalysis by MOF was reviewed in Chapter 5. Pathways of charge transfer in electroactive MOF were first summarized. Redox hopping in MOF was then compared with previous studies on redox active polymer thin films. Lastly, factors that will affect the rate of redox hopping of MOF electrocatalyst were discussed. / Doctor of Philosophy / Solar energy is the most abundant renewable energy resource that can satisfy our energy demand. Solar fuel devices like water splitting systems can generate hydrogen as an environmental friendly energy source. However, the commercialization of water splitting system was hindered by one particular half reaction, water oxidation. Therefore, the development of efficient and stable water oxidation catalysts is critical. Metal-organic framework (MOF) as a porous crystalline material with large surface area is a great platform for stable and reusable solid state water oxidation catalyst. Herein, we incorporated ruthenium based molecular water oxidation catalysts into a MOF denoted as UiO-67. The catalysts doped MOF was able to oxidize water chemically and electrochemically. Furthermore, light absorber molecules were introduced to the MOF to test their catalytic ability towards photoelectrochemical alcohol oxidation. It provides valuable information for the more challenging study of MOF based photoelectrochemcal water oxidation catalysts.
15

Water oxidation : From Molecular Systems to Functional Devices

Daniel, Quentin January 2017 (has links)
The production of hydrogen gas, through the process of water splitting,is one of the most promising concepts for the production of clean andrenewable fuel.The introduction of this thesis provides a brief overview of fossil fuelsand the need for an energy transition towards clean and renewable energy.Hydrogen gas is presented as a possible candidate fuel with its productionthrough artificial photosynthesis, being described. However, the highlykinetically demanding key reaction of the process – the water oxidationreaction – requires the use of a catalyst. Hence, a short presentation of differentmolecular water oxidation catalysts previously synthesized is also provided.The second part of the thesis focuses on ruthenium-based molecularcatalysis for water oxidation. Firstly, the design and the catalytic performancefor a new series of catalysts are presented. Secondly, a further study onelectron paramagnetic resonance of a catalyst shows the coordination of awater molecule to a ruthenium centre to generate a 7-coordinated complex atRuIII state. Finally, in an electrochemical study, coupled with nuclear magneticresonance analysis, mass spectrometry and X-ray diffraction spectroscopy, wedemonstrate the ability of a complex to perform an in situ dimerization of twounits in order to generate an active catalyst.The final part of this thesis focuses on immobilisation of first rowtransition metal catalysts on the surface of electrodes for electrochemical wateroxidation. Initially, a copper complex was designed and anchored on a goldsurface electrode. Water oxidation performance was studied byelectrochemistry, while deactivation of the electrode was investigated throughX-ray photoelectron spectroscopy, revealing the loss of the copper complexfrom the electrode during the reaction. Finally, we re-investigated cobaltporphyrin complexes on the surface of the electrode. Against the backgroundof previous report, we show that the decomposition of cobalt porphyrin intocobalt oxide adsorbed on the surface is responsible for the catalytic activity.This result is discussed with regard to the detection limit of various spectroscopic methods. / <p>QC 20170529</p>
16

Catalysts for Oxygen Production and Utilization : Closing the Oxygen Cycle: From Biomimetic Oxidation to Artificial Photosynthesis

Karlsson, Erik January 2011 (has links)
This thesis describes the development and study of catalysts for redox reactions, which either utilize oxygen or hydrogen peroxide for the purpose of selectively oxidizing organic substrates, or produce oxygen as the necessary byproduct in the production of hydrogen by artificial photosynthesis. The first chapter gives a general introduction about the use of environmentally friendly oxidants in the field of organic synthesis, and about the field of artificial photosynthesis. The second chapter describes a computational study of the mechanism of palladium-catalyzed oxidative carbohydroxylation of allene-substituted conjugated dienes. The proposed mechanism, which was supported by DFT calculations, involves an unusual water attack on a (π-allyl)palladium complex. The third chapter describes a computational study of the oxidation of unfunctionalized hydrocarbons, ethers and alcohols with hydrogen peroxide, catalyzed by methyltrioxorhenium (MTO). The mechanism was found to proceed via rate-limiting hydride abstraction followed by hydroxide transfer in a single concerted, but highly asynchronous, step as shown by intrinsic reaction coordinate (IRC) scans. The fourth chapter describes the use of a new hybrid (hydroquinone-Schiff base)cobalt catalyst as electron transfer mediator (ETM) in the palladium-catalyzed aerobic carbocyclization of enallenes. Covalently linking the two ETMs gave a fivefold rate increase compared to the use of separate components. The fifth chapter describes an improved synthetic route to the (hydroquinone-Schiff base)cobalt catalysts. Preparation of the key intermediate 5-(2,5-hydroxyphenyl)salicylaldehyde was improved by optimization of the key Suzuki coupling and change of protecting groups from methyl ethers to easily cleaved THP groups. The catalysts could thus be prepared in good overall yield from inexpensive starting materials. Finally, the sixth chapter describes the preparation and study of two catalysts for water oxidation, both based on ligands containing imidazole groups, analogous to the histidine residues present in the oxygen evolving complex (OEC) and in many other metalloenzymes. The first, ruthenium-based, catalyst was found to catalyze highly efficient water oxidation induced by visible light. The second catalyst is, to the best of our knowledge, the first homogeneous manganese complex to catalyze light-driven water oxidation. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Accepted. Paper 6: Submitted.</p>
17

Phosphorus release and recovery from treated sewage sludge

Stark, Kristina January 2005 (has links)
In working towards a sustainable society, recycling and recovery of products together with handling of scarce resources must be considered. The growing quantities of sludge from wastewater treatment plants and the increasingly stringent restrictions on landfilling and on agricultural use of sludge are promoting other disposal alternatives. Sludge fractionation, providing sludge volume reduction, product recovery and separation of toxic substances into a small stream, has gained particular interest. In this thesis, the potential for phosphate release and recovery from treated sewage sludge is investigated as an alternative for agricultural use in urban areas. Leaching and recovery experiments were performed on sludge residue from supercritical water oxidation, ash from incineration and dried sludge at different temperatures. Results showed that acid or alkaline leaching is a promising method to release phosphate from sewage sludge treated with supercritical water oxidation, incineration, or drying at 300°C. The leaching is affected by a number of factors, including how the sludge residue has been produced, the origin of the sludge residue, the quantity of chemicals added and the presence of ions in the leachate. The implementation of any particular sludge treatment technology would depend on cost, environmental regulations, and social aspects. The results of this thesis may be beneficial for minimizing the use and cost of chemicals, and give increased knowledge for further development of technology for phosphate recovery. / QC 20100930
18

Substrate water binding to the oxygen-evolving complex in photosystem II

Nilsson, Håkan January 2014 (has links)
Oxygenic photosynthesis in plants, algae and cyanobacteria converts sunlight into chemical energy. In this process electrons are transferred from water molecules to CO2 leading to the assembly of carbohydrates, the building blocks of life. A cluster of four manganese ions and one calcium ion, linked together by five oxygen bridges, constitutes the catalyst for water oxidation in photosystem II (Mn4CaO5 cluster). This cluster stores up to four oxidizing equivalents (S0,..,S4 states), which are then used in a concerted reaction to convert two substrate water molecules into molecular oxygen. The reaction mechanism of this four-electron four-proton reaction is not settled yet and several hypotheses have been put forward. The work presented in this thesis aims at clarifying several aspects of the water oxidation reaction by analyzing the mode of substrate water binding to the Mn4CaO5 cluster. Time-resolved membrane-inlet mass spectrometric detection of flash-induced O2 production after fast H218O labelling was employed to study the exchange rates between substrate waters bound to the Mn4CaO5 cluster and the surrounding bulk water. By employing this approach to dimeric photosystem II core complexes of the red alga Cyanidoschyzon merolae it was demonstrated that both substrate water molecules are already bound in the S2 state of the Mn4CaO5 cluster. This was confirmed with samples from the thermophilic cyanobacterium Thermosynechococcus elongatus. Addition of the water analogue ammonia, that is shown to bind to the Mn4CaO5 cluster by replacing the crystallographic water W1, did not significantly affect the exchange rates of the two substrate waters. Thus, these experiments exclude that W1 is a substrate water molecule. The mechanism of O-O bond formation was studied by characterizing the substrate exchange in the S3YZ● state. For this the half-life time of this transient state into S0 was extended from 1.1 ms to 45 ms by replacing the native cofactors Ca2+ and Cl- by Sr2+ and I-. The data show that both substrate waters exchange significantly slower in the S3YZ● state than in the S3 state. A detailed discussion of this finding lead to the conclusions that (i) the calcium ion in the Mn4CaO5 cluster is not a substrate binding site and (ii) O-O bond formation occurs via the direct coupling between two Mn-bound water-derived oxygens, which were assigned to be the terminal water/hydroxy ligand W2 and the central oxo-bridging O5. The driving force for the O2 producing S4→S0 transition was studied by comparing the effects of N2 and O2 pressures of about 20 bar on the flash-induced O2 production of photosystem II samples containing either the native cofactors Ca2+ and Cl- or the surrogates Sr2+ and Br-. While for the Ca/Cl-PSII samples no product inhibition was observed, a kinetic limitation of O2 production was found for the Sr/Br-PSII samples under O2 pressure. This was tentatively assigned to a significant slowdown of the O2 release in the Sr/Br-PSII samples. In addition, the equilibrium between the S0 state and the early intermediates of the S4 state family was studied under 18O2 atmosphere in photosystem II centers devoid of tyrosine YD. Water-exchange in the transiently formed early S4 states would have led to 16,18O2 release, but none was observed during a three day incubation time. Both experiments thus indicate that the S4→S0 transition has a large driving force. Thus, photosynthesis is not limited by the O2 partial pressure in the atmosphere.
19

The hydrogen-bonded water network in the oxygen-evolving complex of photosystem II

Polander, Brandon C. 13 January 2014 (has links)
Protein dynamics play a key role in enzyme-catalyzed reactions. Vibrational spectroscopy provides a method to follow these structural changes and thereby describe the reaction coordinate as a function of space and time. A vibrational spectroscopic technique, reaction-induced FTIR spectroscopy, has been applied to the study of the oxygen-evolving complex (OEC) of photosystem II (PSII). In plant photosynthesis, PSII evolves oxygen from the substrate, water, by the accumulation of photo-oxidizing equivalents at the OEC. Molecular oxygen and protons are the products of this reaction, which is responsible for the maintenance of an aerobic atmosphere on earth. The OEC is a Mn4CaO5 cluster with nearby bound chloride ions. Sequentially oxidized states of the OEC are termed the S states. The dark-stable state is S1, and oxygen is released on the transition from S3 to S0. Using short laser flashes, individual S states are generated, allowing vibrational spectroscopy to be used to study these different oxidation states of the OEC. In current X-ray crystal structures, hydrogen bonds to water molecules are predicted to form an extensive network around the Mn4CaO5 cluster. In the OEC, four peptide carbonyl groups are linked to the water network, which extends to two Mn-bound and two Ca-bound water molecules. This dissertation discusses a vibrational spectroscopic method that uses these peptide carbonyl frequencies as reporters of solvatochromic changes in the OEC. This technique provides a new, high-resolution method with which to study water and protein dynamics in PSII and other enzymes.
20

Artificial Water Splitting: Ruthenium Complexes for Water Oxidation

Duan, Lele January 2011 (has links)
This thesis concerns the development and study of Ru-based water oxidation catalysts (WOCs) which are the essential components for solar energy conversion to fuels. The first chapter gives a general introduction about the field of homogenous water oxidation catalysis, including the catalytic mechanisms and the catalytic activities of some selected WOCs as well as the concerns of catalyst design. The second chapter describes a family of mononuclear Ru complexes [Ru(pdc)L3] (H2pdc = 2,6-pyridinedicarboxylic acid; L = pyridyl ligands) towards water oxidation. The negatively charged pdc2− dramatically lowers the oxidation potentials of Ru complexes, accelerates the ligand exchange process and enhances the catalytic activity towards water oxidation. A Ru aqua species [Ru(pdc)L2(OH2)] was proposed as the real catalyst. The third chapter describes the analogues of [Ru(terpy)L3]2+ (terpy = 2,2′:6′,2′′-terpyridine). Through the structural tailor, the ligand effect on the electrochemical and catalytic properties of these Ru complexes was studied. Mechanistic studies suggested that these Ru-N6 complexes were pre-catalysts and the Ru-aqua species were the real WOCs. The forth chapter describes a family of fast WOCs [Ru(bda)L2] (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid). Catalytic mechanisms were thoroughly investigated by electrochemical, kinetic and theoretical studies. The main contributions of this work to the field of water oxidation are (i) the recorded high reaction rate of 469 s−1; (ii) the involvement of seven-coordinate Ru species in the catalytic cycles; (iii) the O-O bond formation pathway via direct coupling of two Ru=O units and (iv) non-covalent effects boosting up the reaction rate. The fifth chapter is about visible light-driven water oxidation using a three component system including a WOC, a photosensitizer and a sacrificial electron acceptor. Light-driven water oxidation was successfully demonstrated using our Ru-based catalysts. / QC 20110922

Page generated in 0.1408 seconds