Spelling suggestions: "subject:"water quality managementabout africa."" "subject:"water quality managementabout affrica.""
51 |
Sustainable cities water investment and management for improved water service delivery : a case study of South African metropolitan municipalitiesMukwarami, Silas January 2021 (has links)
Thesis (Ph.D. Commerce (Accounting)) -- University of Limpopo, 2021 / Despite South Africa's progress towards increasing investments in water management (IWM), water services delivery challenges (WSDCs) are prevalent. However, this further proves that focusing on only increasing (IWM) without addressing sustainability practices is not the only lasting solution. Therefore, the study examined the relationship between Sustainable Water Infrastructure (SWI) factors and IWM in South African metropolitan municipalities (SAMMs) to explore an alternative way of dealing with WSDCs. The study considered 278 municipalities in South Africa as the population. Furthermore, the study purposively selected eight (8) SAMMs, and employed quantitative content analysis to collect secondary data (2009 to 2019) from the various internet-based data sources. The data analysis procedure involved multivariate regression analysis through which Ordinary Least Squares and Feasible Generalised Least Squares produced results for the study. The study results suggest that only environmental management practices have had a positive but insignificant effect on IWM, whereas social, governance and economic factors have adversely and insignificantly influenced IWM. Overall, the relationship between SWI factors and IWM in SAMMs has turned out to be neutral. The results further expose the metropolitan councils' lack of proactive strategies to deal with the SWI factors that impede progressive efforts towards addressing an underinvestment gap and the worsening
WSDCs. Since the study pioneered in the water management narrative, it has initiated new
approaches to addressing WSDCs in the South African context. The study results present
important implications for water service authorities and policymakers in South Africa as the narrative concerning the development of sustainable cities continues to gain momentum in urban development discourses. The study further recommends that SAMMs adhere to guidelines proposed in the framework to ensure that created investment opportunities due to good SEGE practices can enhance IWM. Lastly, further studies in this field of study are fundamental in exploring various approaches to addressing WSDCs. / Mpumalanga Department of Education (MDE)
|
52 |
Anthropogenic impacts on the integrity of the Blesbokspruit catchment : a case study of surface water pollutionPhaleng, Dipitseng Maropeng 09 1900 (has links)
Water Quality Management is one of the critical challenges currently facing South Africa.
The triad of water resource management, socio- economic development and
environmental sustainability are key issues that require balance and compromise. The
effects of anthropogenic activities on the Blesbokspruit catchment were examined. Water
samples were collected from nine strategically selected sites along the stream for a period
of ten months in six weekly intervals and analysed for physio-chemical, selected trace
metals and microbial entities. Results revealed that variables of concern were Electrical
Conductivity (EC), Total Suspended Solids (TSS), Nitrates, Phosphates, Sulphates and
Chemical Oxygen Demand (COD). Mean levels of these parameters in this order ranged
from 93.0-146.63mS/m; 11.25-39mg/L; 0.16-2.01mg/L; 0.5-0.96mg/L; 118.63-379.5mg/L
and 15.0-34.0mg/L respectively. Levels of E. coli and F. coliforms also ranged from 19.13-
43999.125 cfu/100mL and 20.63-16878.5 cfu/100mL respectively which were of concern.
Levels of analysed trace metals were tolerable except for Fe with a range of 0.04-
0.73mg/L. Generally, the results from this study indicate that the river is contaminated and
therefore not suitable for direct human consumption as well as for irrigation purposes.
|
53 |
A water resources quality assessment case study involving a package plant in Mogale cityDe Bruyn, Karin 11 1900 (has links)
Inadequately treated wastewater effluent is harmful to the receiving aquatic environment. Water-borne chemicals and microbial pathogens pose a health risk to anyone living downstream from sewage treatment facilities. This study assessed the effluent from a package plant with a design capacity of 48kℓ/24 hours, servicing 12 household units and a restaurant in Mogale City. Over a 12 month period, fortnightly water samples were collected from ten selected sites including two boreholes, a river and two dams. Standard parameters including physical (pH, EC, temperature, DO and SS), chemical (nutrient concentration) and biological (bacterial counts) were analysed using handheld meters, standard membrane filter techniques and colorimetric methods. One borehole was affected by pathogen and nitrate runoff from an adjacent poultry farm. If regularly monitored, the package plant effectively removed microbes (most samples contained 0 cfu/100mℓ) but above limit COD, ammonia and phosphate was released in the effluent (with maximum values of 322 mg/ℓ, 42.52 mg/ℓ and 7.18 mg/ℓ, respectively). Generally, river and dam water at the site was of good quality. / Environmental Science / M. Sc. (Environmental Science)
|
54 |
Anthropogenic impacts on the integrity of the Blesbokspruit catchment : a case study of surface water pollutionPhaleng, Dipitseng Maropeng 09 1900 (has links)
Water Quality Management is one of the critical challenges currently facing South Africa.
The triad of water resource management, socio- economic development and
environmental sustainability are key issues that require balance and compromise. The
effects of anthropogenic activities on the Blesbokspruit catchment were examined. Water
samples were collected from nine strategically selected sites along the stream for a period
of ten months in six weekly intervals and analysed for physio-chemical, selected trace
metals and microbial entities. Results revealed that variables of concern were Electrical
Conductivity (EC), Total Suspended Solids (TSS), Nitrates, Phosphates, Sulphates and
Chemical Oxygen Demand (COD). Mean levels of these parameters in this order ranged
from 93.0-146.63mS/m; 11.25-39mg/L; 0.16-2.01mg/L; 0.5-0.96mg/L; 118.63-379.5mg/L
and 15.0-34.0mg/L respectively. Levels of E. coli and F. coliforms also ranged from 19.13-
43999.125 cfu/100mL and 20.63-16878.5 cfu/100mL respectively which were of concern.
Levels of analysed trace metals were tolerable except for Fe with a range of 0.04-
0.73mg/L. Generally, the results from this study indicate that the river is contaminated and
therefore not suitable for direct human consumption as well as for irrigation purposes.
|
55 |
Comparison of diagnostic tools and molecular based techniques for the rapid identification of Escherichia coli and coliforms in contaminated river waterNdlovu, Thando January 2013 (has links)
Thesis submitted in fulfilment of the requirements for the degree
Master of Technology: Environmental Health
in the Faculty of Applied Sciences
at the Cape Peninsula University of Technology, 2013 / Water is an important daily requirement and in a clean, pure form, it promotes health and well-being. In addition to South Africa being one of the driest countries in the world, water availability is also being compromised by massive pollution of remaining water sources. The Berg- and Plankenburg Rivers are two of the surface water sources in the Western Cape, South Africa, which are highly polluted by sewage, industrial and agricultural run-off. The current investigation was aimed at comparing diagnostic tools, which are employed by municipalities and food industries, and molecular based techniques to routinely monitor water for indicator organisms in time- and cost-effective manner. These rivers were sampled twice a month (July 2010 to January 2011) at the sites closest to the informal settlements of Kayamandi in Stellenbosch (Plankenburg River) and Mbekweni in Paarl (Berg River).
The contamination levels of the two river systems were evaluated by the enumeration of Escherichia coli and coliforms using the Colilert 18® system, Membrane Filtration (MF) and Multiple Tube Fermentation (MTF) techniques. The highest faecal coliform count of 9.2 × 106 microorganisms/100 ml was obtained in weeks 21 and 28 from the Plankenburg River system by the MTF technique, while the lowest count of 1.1 × 103 microorganisms/100 ml was obtained in week one for both river systems by the MTF technique. The highest E. coli count of 1.7 × 106 microorganisms/100 ml was obtained from the Berg River system (week 9) using the MTF technique, while the lowest count of 3.6 × 102 microorganisms/100 ml was obtained by the MF technique from the Plankenburg River system. The coliform and E. coli counts obtained by the enumeration techniques thus significantly (p > 0.05) exceeded the guidelines of 2000 microorganisms/100 ml stipulated by the Department of Water Affairs and Forestry (DWAF, 1996) for water used in recreational purposes.
Overall the results obtained in this study showed that the water in the Berg- and Plankenburg River systems is highly polluted, especially where these water sources are used for irrigational and recreational purposes. For the coliform and E. coli counts obtained using the three enumeration techniques, it was noted that the MTF technique was more sensitive and obtained higher counts for most of the sampling weeks. However, the media (Membrane lactose glucuronide agar) used in the MF technique also effectively recovered environmentally stressed microbial cells and it was also better for the routine selection and growth of coliforms and E. coli. While E. coli and total coliforms were detected utilising the Colilert 18® system, accurate enumeration values for these two indicator groups was not obtained for the entire sampling period for both river systems. It has previously been shown that dilutions (up to 10-3) of highly polluted waters increase the accuracy of the Colilert 18® system to enumerate colifoms and E. coli in marine waters. As the results obtained utilising
the Colilert 18® system were also not comparable to the MF and MTF techniques it is recommended that highly polluted water samples be diluted to increase the accuracy of this system as a routine enumeration technique.
Water samples were directly inoculated onto MacConkey, Vile Red Bile (VRB) agar and the Chromocult Coliform agar (CCA) and single colonies were inoculated onto nutrient agar. Chromocult coliform agar proved to be more sensitive than MacConkey and VRB agar for the culturing of E. coli and coliforms. Preliminary identification of these colonies was done using the RapID ONE and API 20 E systems. The most isolated Enterobacteriaceae species by both systems, included Klebsiella pneumoniae, Klebsiella oxytoca, Escherichia coli and Enterobacter cloacae in both river systems. The API 20 E system was more sensitive in the preliminary identification of the various isolates, as greater species diversity was obtained in comparison to the RapID ONE system.
The Polymerase Chain Reaction (PCR) was firstly optimised using positive Enterobacteriaceae species. The optimised method was then applied to the analysis of river water samples, which were centrifuged to harvest the bacterial cells, with DNA extracted using the boiling method. The extracted DNA was amplified using conventional PCR with the aid of species specific primers. The Enterobacteriaceae species that were detected throughout the study period in both river systems include Serratia marcescens, Escherichia coli, Klebsiella pneumoniae and Bacillus cereus. Conventional PCR was the most reliable and sensitive technique to detect Enterobacteriaceae to species level in a short period of time when compared to RapID ONE and the API 20 E systems. Multiplex PCR was optimised using the positive pathogenic E. coli strains namely, Enteropathogenic E. coli (EPEC), Enteroinvasive E. coli (EIEC), Enterohaemorrhagic E. coli (EHEC) and Enteroaggregative E. coli (EAEC). It was then employed in river water sample analysis and enabled the detection of EAEC, EHEC, and EIEC strains in Berg River system, with only the EAEC detected in the Plankenburg River system. Real-time PCR was used to optimise the multiplex PCR in the amplification of E. coli strains and successfully reduced the time to obtain final results when using control organisms. Real-time PCR was found to be more sensitive and time-effective in the identification of E. coli strains, and also more pronounced DNA bands were observed in real-time PCR products compared to conventional-multiplex PCR amplicons.
To sustain the services provided by the Berg- and Plankenburg Rivers in the Western Cape (South Africa), these water sources should frequently be monitored, results assessed and reported according to the practices acknowledged by responsible bodies. It is therefore recommended that the enumeration techniques be used in conjunction with the very sensitive PCR technique for the accurate detection of coliforms and E. coli in river water samples.
|
56 |
Investigating industrial effluent impacts on municipal wastewater treatment plantIloms, Eunice Chizube 07 1900 (has links)
Industrial effluents with high concentrations of heavy metals are widespread pollutants of great concerns as they are known to be persistent and non-degradable. Continuous monitoring and treatment of the effluents become pertinent because of their impacts on wastewater treatment plants. The aim of this study is to determine the correlation between heavy metal pollution in water and the location of industries in order to ascertain the effectiveness of the municipal waste water treatment plant. Heavy metal identification and physico-chemical analysis were done using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and multi-parameter probe respectively. Correlation coefficients of the measured values were done to investigate the effect of the industrial effluents on the treatment plants. Heavy metal resistant bacteria were identified and characterised by polymerase chain reaction and sequencing. Leeuwkuil wastewater treatment plants were effective in maintaining temperature, pH, and chemical oxygen demand within South Africa green drop and SAGG Standards whereas the purification plant was effective in maintaining the values of Cu, Zn, Al, temperature, BOD, COD, and TDS within the SANS and WHO standard for potable water. This findings indicated the need for the treatment plants to be reviewed.The industrial wastewater were identified as a point source of heavy metal pollution that influenced Leeuwkuil wastewater treatment plants and the purification plants in Vaal, Vereenining South Africa. Pseudomonas aeruginosa, Serratia marcescens, Bacillus sp. strain and Bacillus toyonensis that showed 100% similarity were found to be resistant to Al, Cu, Pb and Zn. These identified bacteria can be considered for further study in bioremediation. / Environmental Sciences / M. Sc. (Environmental Science)
|
57 |
An investigation of community learning through participation in integrated water resource management practicesPhiri, Charles M January 2012 (has links)
South Africa is a semi arid country in which the average rainfall of 450mm/year is well below the world average of about 860mm/year. As a result, South Africa’s water resources are scarce in global terms and limited in extent. Current predictions are that demand will outstrip water availability in the next 15 years. A coordinated approach to improve both water quality and quantity is needed and in order to achieve that, it is crucial to strengthen capacities of local community involvement in identifying the problems that affect them and strategies to solve them. This research was undertaken to develop a deeper understanding of community learning processes in integrated water resources management (IWRM) practices. The study drew on situated and social learning theory which explains that knowledge and skills are learned and embedded in the contexts in which knowledge is obtained and applied in everyday situations. Multiple data collection techniques were used within a case study design and included document analysis, interviews, focus group discussions and field observations. Data analysis was done in three phases and involved uncovering patterns and trends in the data sets. In this context I discovered, through careful observation and interviews with members of the different communities of practice, that people are learning through social learning interactions with other community members as they engage in their daily water management and food production practices. Learning interactions take place through both informal and formal processes such as meetings, training workshops, conversations and interactions with outsiders. I also discovered that people learn from ‘external groups’ or training programmes which bring new knowledge and expertise, but this needs to be contextualised in the local communities of practice. The research has also shown that there are a number of challenges that appear to exist in these learning contexts. For instance it was found that participation and social learning processes and interactions are influenced by a range of causal mechanisms that are contextual. These insights into how communities learn, as well as the tensions and difficulties that are experienced in the learning processes are important for furthering learning and participation in community-based IWRM practices, projects and programmes.
|
58 |
Environmental water quality management of glyphosate-based herbicides in South AfricaMensah, Paul Kojo January 2013 (has links)
Although the use of pesticides is necessary to meet the socio-economic needs of many developing countries, especially in Africa, side effects of these bio-active chemicals have contributed to contaminating aquatic and terrestrial ecosystems. Environmental water quality degradation by pesticides interferes with ecosystem health and poses numerous risks to aquatic life. In South Africa, glyphosate-based herbicides are frequently used to control weeds and invading alien plants, but ultimately end up in freshwater ecosystems. However, there are no South African-based environmental water quality management strategies to regulate these bio-active chemicals. Therefore, this study sought to provide a sound scientific background for the environmental water quality management of glyphosate-based herbicides in South Africa, by conducting both laboratory and field investigations. In the laboratory investigations, aquatic ecotoxicological methods were used to evaluate responses of the freshwater aquatic shrimp Caridina nilotica exposed to Roundup® at different biological system scales, and the responses of multiple South African aquatic species exposed to Roundup® through species sensitivity distribution (SSD). In the field investigations, the effect of Kilo Max WSG on the physicochemical and biological conditions of three selected sites in the Swartkops River before and after a spray episode by Working for Water were evaluated through biomonitoring, using the South African Scoring System version 5 (SASS5) as a sampling protocol. Both Roundup® and Kilo Max WSG are glyphosate-based herbicides. All the data were subjected to relevant statistical analyses. Findings of this study revealed that Roundup® elicited responses at different biological system scales in C. nilotica, while SSD estimates were used to derive proposed water quality guidelines for glyphosate-based herbicides in South Africa. The biomonitoring revealed that using glyphosate-based herbicides to control water hyacinth within the Swartkops River had a negligible impact on the physicochemical and biological conditions. Based on these findings, a conceptual framework that can be used for the integrated environmental water quality management of glyphosate-based herbicides in South Africa was developed as part of integrated water resource management (IWRM). The combined data sets contribute to a sound scientific basis for the environmental water quality management of glyphosate-based herbicides in South Africa.
|
59 |
A water resources quality assessment case study involving a package plant in Mogale cityDe Bruyn, Karin 11 1900 (has links)
Inadequately treated wastewater effluent is harmful to the receiving aquatic environment. Water-borne chemicals and microbial pathogens pose a health risk to anyone living downstream from sewage treatment facilities. This study assessed the effluent from a package plant with a design capacity of 48kℓ/24 hours, servicing 12 household units and a restaurant in Mogale City. Over a 12 month period, fortnightly water samples were collected from ten selected sites including two boreholes, a river and two dams. Standard parameters including physical (pH, EC, temperature, DO and SS), chemical (nutrient concentration) and biological (bacterial counts) were analysed using handheld meters, standard membrane filter techniques and colorimetric methods. One borehole was affected by pathogen and nitrate runoff from an adjacent poultry farm. If regularly monitored, the package plant effectively removed microbes (most samples contained 0 cfu/100mℓ) but above limit COD, ammonia and phosphate was released in the effluent (with maximum values of 322 mg/ℓ, 42.52 mg/ℓ and 7.18 mg/ℓ, respectively). Generally, river and dam water at the site was of good quality. / Environmental Science / M. Sc. (Environmental Science)
|
60 |
Exploring the development of an integrated, participative, water quality management process for the Crocodile River catchment, focusing on the sugar industrySahula, Asiphe January 2015 (has links)
Water quality deterioration is reaching crisis proportions in South Africa. Many South African catchments are over-allocated, and decreasing volumes of source water mean increasing concentrations of pollutants. The Crocodile River Catchment in the Mpumalanga province in South Africa was identified through previous research, as a catchment faced with deteriorating source water quality for water users in the catchment. Poor source water quality has become a sufficiently acute concern for the stakeholders in this catchment to co-operate in developing a process that assists with compliance control of their water use and waste disposal to reduce costs, decrease industrial risks as water quality compliance increases, and improve source water quality. The sugar industry is downstream within the Crocodile River Catchment, and is affected by the activities of all upstream water users; the industry is thus dependent on the stakeholders upstream participating in the effective management of the resource. However, the sugar industry is also located just before the confluence of the Crocodile River and Komati River upstream of the Mozambique border, and thus the water quality of the sugar industry effluent will affect the quality of the water that flows into Mozambique. The sugar industry is on the opposite river bank to the Kruger National Park, which has high water resource protection goals. Therefore, the sugar industry has a national role to play in the management of water resources in the Crocodile River Catchment. This study provides a focused view of the role of the sugar industry in the development of a co-operative, integrated water quality management process (IWQMP) in the Crocodile River Catchment. In order to address the objectives of this study, this research drew from an understanding of the social processes that influence water management practices within the sugar industry as well as social processes that influence the role of the Inkomati-Usuthu Catchment Management Agency as the main governing institution in water resource management in the Inkomati Water Management Area. The study also drew from an understanding of scientific knowledge in terms of a water chemistry which describes the upstream and downstream water quality impacts related to the sugar industry. The water quality analysis for the Lower Crocodile River Catchment shows a decline in water quality in terms of Total Dissolved Solids (TDS) loads when moving from below Mbombela to the Mozambique border. The major sources of TDS in the Lower Crocodile River are point source dominated, which may be attributed to the extensive mining, industrial and municipal activities that occur across the catchment. When observing Total Alkalinity (TAL) and pH values from below Mbombela to the furthest monitoring point, there is deterioration in the quality of the water in the Lower Crocodile River, with the Kaap River contributing a negative effect that is diluted by the Crocodile main stem. The Hectorspruit Waste Water Treatment Works (WWTWs) (located in the Lower Crocodile River Catchment) contributes high concentrations of TDS and TAL into the Crocodile River. Total Inorganic Nitrogen and Soluble Reactive Phosphorus concentrations decrease in the lower reaches of the Crocodile River compared with the river below Mbombela, which can be attributed to the extensive sugar cane plantations located in the Lower Crocodile River Catchment acting as an “agricultural wetland” that serves a function of bioremediation resulting in large scale absorption of nutrients. This is an interesting result as earlier assumptions were that fertiliser application would result in an overall increase in nutrient loads and concentrations. Biomonitoring data show no substantial change in aquatic health in the LowerCrocodile River Catchment. For a catchment that has an extensive agricultural land use in terms of sugarcane and citrus production, the Crocodile River is unexpectedly not in a toxic state in terms of aquatic health. This is a positive result and it suggests that pesticide use is strictly controlled in the sugar and citrus industry in the Crocodile River Catchment. For long term sustainability, it is essential for the sugar industry to maintain (and possibly improve) this pesticide management. The social component of this study aimed to provide an analysis of the management practices of the sugar mill as well as examining agricultural practices in the sugar cane fields in relation to water quality management through the use of Cultural Historical Activity System Theory (CHAT). This component showed that there are contradictions within the sugar industry activity system that are considered to be areas of “tension” that can be loosened or focused on to improve the contribution the sugar industry can make to the IWQMP. Surfacing contradictions within the sugar industry activity system and the Inkomati-Usuthu Catchment Management Agency activity systems highlighted areas of potential for learning and change. While an understanding of biophysical processes through scientific knowledge is critical in water management decision making, it is evident that an understanding of other actors, institutions and networks that inform water quality management decision-making also plays a significant role. The notion of improving the role of scientific or biophysical knowledge in contributing to socio-ecologically robust knowledge co-creation, decisions and actions towards resolving water quality problems is emphasised. Specifically, moving towards improving interactions between scientists and other actors (water users in the Crocodile Catchment in this case), so that scientific practices become more orientated towards societal platforms where water quality management is tackled to enable improved water quality management practices. Therefore, linking the social and biophysical components in this study provides a holistic understanding of how the sugar industry can contribute to the development of an IWQMP for the Crocodile River catchment.
|
Page generated in 0.1079 seconds