• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP).

Sudoi, Elias K. 08 1900 (has links)
This research presents the results on an experimental investigation to identify the significant factors influencing horizontal cracking in continuously reinforced concrete pavements (CRCP). An in-depth analysis of the microstructure, morphological characteristics of the interfacial transition zone (ITZ) and the observation of cracking using the environmental scanning electron microscope (ESEM) was done. Characterization of oxides using Fourier transform infrared spectroscopy (FTIR) and electron dispersive x-ray spectroscopy (EDS) was also performed. Water to cement ratio (w/c) and rebar temperature had a significant influence on the rebar-concrete bond strength. The 28-day shear strength measurements showed an increase in rebar-concrete bond strength as the water to cement ratio (w/c) was reduced from 0.50 to 0.40. There was a reduction in the peak pullout load as the temperature increased from 14oF to 252oF for the corroded and non-corroded rebar experiments. The corroded rebar pullout test results showed a 20-50 % reduction in bond strength compared to the non-corroded rebars. FTIR measurements indicated a presence of lepidocrocrite (γ -FeOOH) and maghemite (γ -Fe2O3) on the ITZ. ESEM images showed the existence of microcracks as early as three days after casting with the bridging of these cracks between coarse aggregate locations in the interfacial zone propagating through the mortar.
2

Investigating the compatibility of nickel coated carbon nanotubes and cementitious composites through experimental evidence and theoretical calculations

Wang, D., Dong, S., Wang, X., Ashour, Ashraf, Lv, X., Han, B. 21 July 2021 (has links)
Yes / Nickel coated multi-walled carbon nanotubes (NiMCNTs) are favorable reinforcing nanofillers for modifying cementitious composites due to their preeminent mechanical properties, electrical conductivity, thermal properties and dispersibility. This paper investigates the mechanical properties and compatibility of NiMCNTs filled cementitious composites, having two different types of cement, two water to cement ratios, and two dosages of five types of NiMCNTs. The results show that 0.06 vol.% NiMCNTs with small aspect ratios can significantly enhance the mechanical properties of cementitious composites, while NiMCNTs with large aspect ratios play a better strengthening effect at 0.03 vol.%. The flexural strength/toughness of cementitious composites containing 0.06 vol.% NiMCNTs with an aspect ratio of 200 can be increased by 19.65%/116.78%. Adding 0.03 vol.% NiMCNTs with an aspect ratio of 1000 enhances the compressive strength/toughness of composites by 18.61%/47.44%. Besides, NiMCNTs have preferable compatibility to cementitious composites prepared by P·O 42.5R cement with a water to cement ratio of 0.3. The enhancement mechanism is related to the denser microstructure and effective suppression of microcracks in the cementitious matrix by NiMCNTs with filling, bridging and pull-out effects, as well as the high interface bond strength between NiMCNTs and matrix. A strength prediction model for NiMCNTs reinforced cementitious composites is also established to estimate the mechanical strength of cementitious composites containing NiMCNTs with different aspect ratios/contents, showing a small relative error within ±6%/±13% for predicted flexural/compressive strength values in comparison with the experimental results. / Funding supported from the National Science Foundation of China (51908103 and 51978127), and the Fundamental Research Funds for the Central Universities (DUT21RC(3)039).

Page generated in 0.1217 seconds