Spelling suggestions: "subject:"water:purification filtration""
31 |
PEG hydrogels as anti-fouling coatings for reverse osmosis membranesSagle, Alyson Conner 16 October 2012 (has links)
Water is becoming increasingly scarce as the demand for fresh water continues to rise. One potential new water resource is purified produced water. Produced water is generated during oil and gas production, and it is often contaminated with emulsified oil, high levels of salt, and particulate matter. Produced water purification using polymer membranes has been investigated, but its implementation is limited by membrane fouling. This study focused on the preparation and application of poly(ethylene glycol) (PEG) hydrogels as fouling-resistant coatings for commercial reverse osmosis (RO) membranes. To prepare fouling-resistant coatings for RO membranes, three series of copolymer hydrogel networks were synthesized using poly(ethylene glycol) diacrylate (PEGDA) as the crosslinker and acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), or poly(ethylene glycol) acrylate (PEGA) as comonomers, and their transport properties were evaluated. The hydrogels have high water uptake and high water permeability, and crosslink density strongly influences water uptake and water permeability. For example, a 100 mol% PEGDA hydrogel contained 61% water by volume, but 80PEGA, which has essentially the same chemical composition but lower crosslink density, contained 72% water by volume. Hydrogel water permeability ranged from 10 to 26 (L [mu]m)/(m² hr bar) and correlates well with water uptake; high water uptake often leads to high water permeability. Additionally, the copolymers have hydrophilic surfaces with a low affinity for oil, based on contact angle measurements using n-decane in water. Commercial RO membranes (AG RO membrane from GE Water and Process Technologies) were coated with PEG hydrogels, and the desalination and fouling resistance properties of the coated membranes were tested. The water flux of coated membranes and a series-resistance model were used to estimate coating thickness; the coatings were approximately 2 [mu]m thick. NaCl rejection for both uncoated and coated membranes was 99.0% or greater. As determined by zeta potential measurements, both uncoated and coated RO membranes are negatively-charged, but coated membranes are less negatively-charged than uncoated RO membranes. Model oil/water emulsions, prepared with either a cationic or an anionic surfactant, were used to probe membrane fouling. In the absence of oil, surfactant charge, and therefore, electrostatic interactions play a significant role in membrane fouling. In the presence of DTAB, a cationic surfactant, the AG RO membrane water flux immediately dropped to 30% of its initial value, but in the presence of SDS, an anionic surfactant, its water flux gradually decreased to 74% of its initial value after 24 hours. However, in both cases, coated membranes exhibited less flux decline than uncoated membranes. Coated membranes also experienced little fouling in the presence of an n-decane/DTAB emulsion. After 24 hours, the water flux of a PEGDA-coated AG RO membrane was 73% of its initial value, while the water flux of an AG RO membrane fell to 26% of its initial value. Conversely, both coated and uncoated membranes fouled significantly in the presence of an n-decane/SDS emulsion, indicating that oil fouling is controlled both by electrostatic and hydrophobic interactions. Overall, this work provides answers to some of the fundamental questions posed regarding the viability of using modified membranes for produced water treatment. / text
|
32 |
Optimization of the woven fibre-immersed membrane bioreactor (WF-IMBR)Shitemi, Kenneth Khamati, Pillay January 2017 (has links)
Submitted in fulfilment of the requirements for the Degree of Master of Engineering, Durban University of Technology, 2017. / In this research, the woven fibre microfiltration (WFMF) fabric which is produced locally in South Africa is used as a membrane material. It is cheaper in price in comparison with the current commercial membrane materials that are in use. The WFMF is also more robust when compared with the commercial membrane materials thus is able to withstand harsh working conditions. From previous studies on the WFMF, it has been shown that it can be used as a membrane material without any compromise to permeate quality. This research seeks to optimize the working conditions of this membrane material (WFMF) with an aim of achieving lower running costs and better anti fouling strategies in comparison to the commercial MBRs.
The objectives and aims of this research was to come up with a MBR system whose running cost is lower than that for the commercial systems, which can be adapted for use in any environment, especially in the hardship regions where its robustness would be an added advantage. The performance of the WFMF submerged MBR was also optimised including antifouling operating regimes.
This study was done in a pilot plant that was set up at Veolia wastewater treatment plant, Durban Metro Southern Works. The feed water for the pilot plant was pumped from the return activated sludge mixing chamber by means of a submersible pump. The MLSS concentration of the feed water was about 12 g/l. The various investigations that were conducted in the course of this research included the effect of spacing between membrane modules, relaxation steps and frequencies, evaluation of aeration rates and evaluation of coarse vs. fine bubbles which were all aimed at optimizing the performance of the immersed WFMF MBR. The permeate was checked for turbidity and COD levels to ensure that they were within the accepted water standards.
From the experiments it is shown that the critical flux increased with an increase in aeration rate which is in concurrence with the literature and a starting flux of 30 LMH was chosen for the running of the pilot plant for the various experimental runs to be carried out. For the pipe diffuser height effect experimental run, the best results were achieved at a height of 5 cm below the membrane modules and the use of a pipe diffuser gave better results than the use of a disc diffuser. For the membrane module spacing effect the best results were obtained at the smallest possible width i.e. 3.5 mm. The best relaxation step sequence was found to be 9 mins on and 1 min off. COD, turbidity and DO was continuously determined during the course of the experimentation.
Further studies should be done on use of the disc diffuser with increased surface area of aeration holes and also hole sizes of smaller diameters to check on its effectiveness as a means of reducing fouling on the membrane surface. / M
|
33 |
Parametric study and economic evaluation of a simulated biogas upgrading plant25 June 2015 (has links)
M. Tech. (Chemical Engineering) / The usual target of an upgrading process using membrane is to produce a retentate stream, the product, with high CH4 concentration. This work presents a simulation of two possible membrane configurations, single stage without recycle (SSWR) and double stage with permeate recycle (DSPR), of an existing operational biogas upgrading plant. The simulation was conducted using ChemCAD and AlmeeSoft gas permeation software to investigate the performance of the configurations on product purity, recovery and required compressor power with a view to determine the optimal operational conditions for maximising the concentration of CH4 and its recovery. Thereafter, an economic assessment on the optimal configuration was conducted to determine the gas processing cost (GPC), the profitability of producing biomethane and cost-benefit of utilising biomethane as a vehicular fuel. The simulation was validated against plant data with a maximum percentage error of 2.64%. Increasing CO2 in feed reduced product recovery and purity. Increasing feed pressure and selectivity increased product recovery and purity up to the pressure limit of the membrane module. Increasing feed flow rate increased product recovery but reduces purity. In both configurations, increasing CO2 in the feed and increasing feed pressure increased the GPC. However, increasing feed flow rate reduced the GPC. The overall performance of DSPR configuration was much higher due to increased trans-membrane area available for separation. At optimal conditions, a product purity of 91% and 96% CH4 recovery was achieved from the initial plant result of 87.2% product purity and 91.16% CH4 recovery. The total compression duty was 141 kW. The GPC was $0.46/m3 of biomethane. The cumulative discounted NPV, IRR and BCR for producing biomethane was R15,240,343, 22.41% and 2.05 respectively, with a break-even in the 5th year after plant start-up considering a prime lending rate at 9%. Using CBG instead of gasoline saves 34% of annual fuel cost with a payback period of one year and three months for the cost of retrofitting the vehicle.
|
34 |
Energy generating performance of domestic wastewater fed sandwich dual-chamber microbial fuel cells26 June 2015 (has links)
M.Tech. (Civil Engineering) / This study presents work on the design and construction of three dual-chamber microbial fuel cells (MFCs) using a sandwich separator electrode assembly (SSEA) and membrane cathode assembly (MCA) for the dual purposes of energy generation from domestic wastewater and wastewater treatment. MFC1 was designed using an improvised SSEA technique (i.e. a separator electrode membrane electrode configuration, SEMEC) by gluing a sandwich of anode, membrane and a mesh current collector cathode to an anode chamber made from a polyethylene wide-mouth bottle. The reactor was filled with 1500 mL of domestic wastewater and operated on a long fed-batch mode with a residence time of 3 weeks. The reactor was inoculated with a mixed culture of bacteria present in the wastewater stream. The aim was to study the impact of wastewater COD concentration on power generation and wastewater treatment efficiency. For MFC2 and MFC 3, cathodes were constructed using the MCA technique consisting of a membrane and a mesh current collector cathode, with the anode electrode at the opposite side of stacked Perspex sections used for the anode chamber. The impact of electrode material on current production was examined in this study. For MFC2 a mesh current collector treated with polytetrafluoroethylene (PTFE) and activated carbon (AC) functioned as the cathode, while the MFC3 cathode was an uncatalyzed mesh current collector. The two reactors were both filled with 350 mL of domestic wastewater...
|
35 |
Evaluation of a small scale water disinfection system using WFMFAlfa, Dorcas Enaji January 2017 (has links)
Submitted in fulfillment of the academic requirement for the degree Master of Engineering in Chemical Engineering, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban, South Africa, 2017. / Provision of microbiologically safe drinking water for people living in the rural areas of developing countries remains a major challenge to date. One of the reasons is due to the inability to access potable water mainly because of poor existing water purification systems. Current measures have been put in place to address the challenges of rural water supply. Development of appropriate technologies such as decentralized water treatment supply in the form of point of use (POU) systems are been considered.
In lieu of the above, an appropriate POU system known as the Remote Rural Water Treatment System (RRWTS) was developed at Durban University of Technology (DUT). The RRWTS is polyester based locally sourced Woven Fabric Microfiltration (WFMF) membrane system. The unit is made up of flat sheet modules that are assembled into a pack. It is a robust gravity driven system with the ability to remove suspended solids and colloids in the form of turbidity. The system has high flux of 35 ± 7 LMH and turbidity below 1 NTU, it has the ability to remove pathogens well above 95%. However, this does not comply with WHO and SANS drinking water standards of zero E. coli count/100 ml of treated water. In order to bring the water treated by RRWTS to a satisfactory level for drinking, it is then necessary to add a separate disinfection step like chlorination step to further remove the remaining microbial contaminants.
Thus the main objective of the study was to evaluate the disinfection efficacy of two disinfectants namely waterguard and bromochlor tablet disinfectants and investigate their integration with the WFMF membrane. The study was categorised into three parts. The first part is the addition of disinfectants to unfiltered river water sources for the determination of residual chlorine and the most optimum dose that will yield effective disinfection and also evaluate the extent of E. coli removal by the disinfectants. The second stage was the filtration of four river water sources using the woven fibre membrane (WFM) to determine the efficiency of WFMF. Finally the effect of disinfection kinetics on disinfection was achieved by agitating the water after disinfection and allowing it to stand at different contact times. Performance of the RRWTS was determined by the amount of E. coli and turbidity removed during filtration using WFMF and by chemical disinfectants after filtration.
The results on residual chlorine for different water sources showed that feed quality and disinfectant dose determines the quantity of residual chlorine on all the water sources. The effectiveness of chemical disinfectants in E. coli removal is affected by the quality of water to be disinfected. The study showed that turbidity plays a major role on disinfection by increasing chlorine demand on water sources with high turbidity levels. The WFMF demonstrated excellent filtration performance by producing permeates with turbidity less than 1 NTU for feed turbidities ranging from 10 to 200 NTU. The E. coli removal efficiency by WFMF was very high on all the water sources treated. There was 95-99.8% E. coli removal on raw feeds with influent E. coli ranging between 500 and 44500 CFU/100 ml.
It was seen that major benefits are derived from integrating the WFMF (RRWTS) with chemical disinfection. The benefits includes; better disinfection that meets drinking water set guidelines of zero E. coli and improved quality of water. The need for disinfection kinetics in order to obtain superior disinfection was eliminated. The possibility of disinfection-by-product formation was reduced as smaller quantities of chemical disinfectants were required for complete disinfection on the filtered water. / M
|
36 |
Analysis of reverse osmosis and nanofiltration membrane failure by x-ray photoelectron spectroscopyBeverly, Sharon 01 April 2000 (has links)
No description available.
|
37 |
Development of a small scale water treatment system for fluoride removal for rural areasDlamini, Thulani January 2015 (has links)
Submitted in fulfillment of the requirements for the degree of Master of Engineering in Chemical Engineering, Durban University of Technology. Durban. South Africa, 2015. / Several areas in the world such as the United States of America, Sri Lanka, China, Argentina, Canada, Tanzania, Kenya, South Africa and many others have a problem of high fluoride content in drinking water. Generally fluoride levels above 1.5 ppm in water may result in dental and skeletal fluorosis in humans depending on quantity consumed (Fan et al., 2003; Meenakshi, 2004). Remote rural areas where there are no water treatment facilities are more vulnerable to this problem.
Adsorbents such as activated alumina and FR-10 resin seem to have a potential for successful application in rural areas. These methods however require pre-treatment if the feed has high turbidity. A membrane based system called woven fabric microfiltration gravity filter (WFMFGF) developed by Durban University of Technology proved to be suitable for turbidity removal.
The main objective of this research was to develop a small water treatment system for fluoride removal. The small water treatment system developed in this study consists of WFMFGF for pre-treatment and an adsorption column. The WFMFGF is made up of a 40 L container packed with 15 immersed flat sheet membrane elements. The operation of the WFMFGF is in batch mode, driven by varying static head. The static head variation results in flow rate variation through the system. This in turn result in variation of contact time, velocity as well as pressure drop in the fluoride removal unit.
Specific objectives of the study were: (1) to establish the maximum and minimum flow rates through the WFMFGF system, the total run time before cleaning is required and the best cleaning method for this particular membrane system. (2) to evaluate and compare the performance of activated alumina and FR-10 resin on varying contact time, velocity and pressure drop on the fluoride removal unit. The adsorbents were also compared on adsorption capacity, cost and ease of operation.
The minimum and maximum flow rates through the WFMFGF were found to be 5 l/hr and 100 l/hr respectively. It was found that the system can be run for more than a month before requiring cleaning. The suitable cleaning method was found to be soaking the membranes in 0.0225 percent sodium hypochlorite solution overnight and brushing them using a plastic brush.
The comparison of the performance of FR-10 resin to activated alumina found that the adsorbents gave equal performance based on the given criteria. FR-10 resin had higher adsorption capacity, gave good quality treated water even with shorter contact time and operated at wider velocity range.
Activated alumina on the other hand had an advantage of lower costs, lower pressure drop and ease of use. According to Pontius (1990), the performance of activated alumina can be improved by intermittent operation. Point of use (POU) systems are generally operated intermittently. This improves the fluoride removal efficiency of activated alumina giving it more advantage over FR-10 resin. Based on this activated alumina was selected as the best adsorbent for the system.
After the adsorbent was selected, the adsorption column was designed. The column operation regime was 3.5 minutes minimum contact time and 1.17 to 7.8 m/hr velocity range. The activated alumina adsorption capacity was 1.53mg/g. The column had an inside diameter of 70 mm. It was packed with activated alumina to a bed height of 400 mm. The column inlet and outlet pipes were made of PVC with a standard pipe size of 20 mm outside diameter. A valve at the column inlet pipe allowed water to flow through the system.
|
38 |
Modified track-etched membranes using photocatalytic semiconductors for advanced oxidation water treatment processesRossouw, Arnoux 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The purpose of this study was to develop modi ed tract-etched membranes using
nanocomposite TiO2 for advanced water treatment processes. Photocatalytic oxidation
and reduction reactions take place on TiO2 surfaces under UV light irradiation,
therefore sunlight and even normal indoor lighting could be utilised to achieve this effect.
In membrane ltration, caking is a major problem, by enhancing the anti-fouling
properties of photocatalysts to mineralise organic compounds the membrane life and
e ciency can be improved upon.
In this study the rst approach in nanocomposite membrane development was to directly
modify the surface of polyethylenetherephthalate (PET) track-etched membranes
(TMs) with titanium dioxide (TiO2) using inverted cylindrical magnetron sputtering
(ICMS) for TiO2 thin lm deposition. The second approach was rst to thermally
evaporate silver (Ag) over the entire TM surface, followed by sputtering TiO2 over
the silver-coated TM. As a result a noble metal-titania nanocomposite thin lm layer
is produced on top of the TM surface with both self-cleaning and superhydrophilic
properties. Reactive inverted cylindrical magnetron sputtering is a physical vapour
deposition method, where material is separated from a target using high energy ions
and then re-assimilated on a substrate to grow thin lms. Argon gas is introduced
simultaneously into the deposition chamber along with O2 (the reactive gas) to form
TiO2. The photocatalytic activity and other lm properties, such as crystallinity can
be in
uenced by changing the sputtering power, chamber pressure, target-to-substrate
distance, substrate temperature, sputtering gas composition and
ow rate. These characteristics
make sputtering the perfect tool for the preparation of di erent kinds of TiO2
lms and nanostructures for photocatalysis.
In this work, the utilisation of ICMS to prepare photocatalytic TiO2 thin lms
deposited on track-etched membranes was studied in detail with emphasis on bandgap
reduction and TM surface regeneration. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on track-etched membrane substrates
by exploiting the good qualities of ICMS. The TiO2-TM as well as Ag-TiO2-TM thin
lms were thoroughly characterised. ICMS prepared TiO2 lms were shown to exhibit
good photocatalytic activities. However, the nanocomposite Ag-TiO2 thin lms were
identi ed to be a much better choice than TiO2 thin lms on their own. Finally a
clear enhancement in the photocatalytic activity was achieved by forming the Ag-TiO2
nanocomposite TMs. This was evident from the band-gap improvement from 3.05 eV
of the TiO2 thin lms to the 2.76 eV of the Ag-TiO2 thin lms as well as the superior
surface regenerative properties of the Ag-TiO2-TMs. / AFRIKAANSE OPSOMMING: Die doel van hierdie studie was om verbeterde baan-ge etste membrane (BMe) met behulp
van nano-saamgestelde titaandioksied (TiO2) vir gevorderde water behandeling
prosesse te ontwikkel. Fotokatalitiese oksidasie- en reduksie reaksies vind plaas op
die TiO2 oppervlaktes onder UV-lig bestraling, en dus kan sonlig en selfs gewone binnenshuise
beligting gebruik word om die gewenste uitwerking te verkry. In membraan
ltrasie is die aanpaksel van onsuiwerhede 'n groot probleem, maar die verbetering
van die self-reinigende eienskappe van fotokatalisators deur organiese verbindings te
mineraliseer, kan die membraan se leeftyd en doeltre endheid verbeter word.
In hierdie studie was die eerste benadering om nano-saamgestelde membraan ontwikkeling
direk te verander deur die oppervlak van polyethylenetherephthalate (PET)
BMe met 'n dun lagie TiO2 te bedek, met behulp van reaktiewe omgekeerde silindriese
magnetron verstuiwing (OSMV).Die tweede benadering was eers om silwer (Ag)
termies te verdamp oor die hele BM oppervlak, gevolg deur TiO2 verstuiwing bo-oor
die silwer bedekte BM. As gevolg hiervan is 'n edelmetaal-titanium nano-saamgestelde
dun lm laag gevorm bo-op die oppervlak van die BM, met beide self-reinigende en
verhoogde hidro liese eienskappe. OSMV is 'n siese damp neerslag metode, waar
materiaal van 'n teiken, met behulp van ho e-energie-ione, geskei word, en dan weer opgeneem
word op 'n substraat om dun lms te vorm. Argon gas word gelyktydig in die
neerslag kamer, saam met O2 (die reaktiewe gas), vrygestel om TiO2 te vorm. Die fotokatalitiese
aktiwiteit en ander lm eienskappe, soos kristalliniteit, kan be nvloed word
deur die verandering van byvoorbeeld die verstuiwingskrag, die druk in die reaksiekamer,
teiken-tot-substraat afstand, substraattemperatuur, verstuiwing gassamestelling
en vloeitempo. Hierdie eienskappe maak verstuiwing die ideale hulpmiddel vir die voorbereiding
van die verskillende soorte TiO2 lms en nanostrukture vir fotokatalisasie. In hierdie tesis word OSMV gebruik ter voorbereiding van fotokatalitiese TiO2
dun lms, wat gedeponeer is op BMe. Hierdie lms word dan in diepte bestudeer,
met die klem op bandgaping vermindering en BM oppervlak hergenerasie. Nanogestruktureerde
TiO2 fotokataliste is voorberei deur middel van sjabloongerigte neerslag
op BM substrate deur die ontginning van die goeie eienskappe van OSMV. Die
TiO2-BM dun lms, sowel as Ag-TiO2-BM dun lms, is deeglik gekarakteriseer. OSMV
voorbereide TiO2 dun lms toon goeie fotokatalitiese aktiwiteite. Nano-saamgestelde
Ag-TiO2 dun lms is egter ge denti seer as 'n veel beter keuse as TiO2 dun lms. Ten
slotte is 'n duidelike verbetering in die fotokatalitiese aktiwiteit bereik deur die vorming
van die Ag-TiO2 nano-saamgestelde BMe. Dit was duidelik uit die bandgapingverbetering
van 3,05 eV van TiO2 dun lms in vergelyking met die 2,76 eV van Ag-TiO2
dun lms. 'n Duidelike verbetering is behaal in die fotokatalitiese aktiwiteit deur die
vorming van die Ag-TiO2 nano-saamgestelde TMs.
|
Page generated in 0.2054 seconds