• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards direct wastewater reuse for potable and non-potable uses: an urban water balance, costing and assessment of perceptions at a South African community / Towards direct wastewater reuse for potable and non-potable uses: an urban water balance, costing and assessment of perceptions, financial analysis and viability analysis at a South African community

Beer, Marelize January 2016 (has links)
A research project report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering (Civil Engineering). Vanderbijlpark, 2016 / South Africa is a semi-arid country with an average rainfall of 450 mm per annum. According to the Department of Water Affairs, the total registered water usage in 2013 met the estimated 2025 high water requirement of 17.3 billion m3/annum. Therefore, the need had arisen to reduce water consumption and increase water supply to ensure the sustainability of our nation’s water resources. Many studies show that wastewater reuse or water reclamation is an under-utilized and very viable water conservation concept in South Africa. The reuse of wastewater for direct potable or direct non-potable reuse is a highly debated topic requiring frequent engagement and investigation. Although direct reuse for potable uses is often more contentious than direct reuse for non-potable uses, it is worth investigating for possible future implementation at certain water scares areas. Hence, this study investigated the possibility of the future implementation of direct wastewater reuse at Hartbeesfontein - a selected South African community, for potable or non-potable use. The study incorporated potential users’ perceptions, the cost implications of reuse and water saving potential by means of different water balance models. The survey conducted, measuring the intention of the residents from Hartbeesfontein to accept direct wastewater reuse for potable and non-potable use, revealed the community’s overwhelming acceptance (about 70%) of a reuse system should it be implemented in the future. The community’s preference for wastewater reuse for non-potable use (75%) was higher than for potable use (67%). Hypothetically, it would be possible to reuse 85% of the community’s daily demand for potable use, if all the wastewater collected at the wastewater treatment plant could be treated. It would then mean that the municipality will only need to provide 15% of the daily water demand. The option to reuse wastewater for non-potable use (i.e. to supply an industry) could save the community 22% its daily water demand. In this study, the cost of wastewater treatment for potable use was approximately 350% higher than the cost of potable water supplied by the Midvaal Water Company. The cost of treating wastewater for non-potable use however was approximately 46% less than the cost of potable water supplied by the Midvaal Water Company. By incorporating the outcomes of the water balance, perceptions of the community and analysis of the different wastewater reuse scenario costs, it was evident from the study that direct wastewater reuse for non-potable industrial application was the most viable water reuse option for Hartbeesfontein. / MT2017
2

Assessing the sustainability of direct potable water re-use the Beaufort West Reclamation Plant

Naroth, Nadine January 2016 (has links)
A Research Report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering University of Witwatersrand Johannesburg, February 2016 / A growing population, rapid urbanisation, and climate change are increasing the pressure on water supplies. The chances of finding new freshwater sources for urban areas are becoming nearly impossible, implying that existing water supplies must go further to satisfy the basic need of potable water. Water reclamation involves the treatment of wastewater to meet defined water quality standards so that it may be reused. Direct potable reuse refers to the introduction of wastewater, which has been treated to meet specified standards, directly into the potable water supply distribution system. Water reuse has become an attractive alternative since wastewater is constantly being produced by populations, which can be treated for reuse. This study examines the sustainability of water reclamation for potable purposes, through an assessment of the Beaufort West Water Reclamation Plant, which includes interviews with the plant manager and process controllers, as well as a review of the relevant documentation. The study employs the use of economic, environmental and societal indicators as a tool in determining the sustainability of water reclamation. The results of the research show that direct potable reuse may be a sustainable solution to reducing the stress on water resources, although certain aspects of the reclamation process require further development in order to progress toward sustainability. In order to provide a long term solution, water reclamation will have to be implemented in conjunction with other water conservation strategies. / MT2017

Page generated in 0.0914 seconds