• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of small scale hydroelectric power in South Africa, hydro and economic potential for rural electrification.

Reddy, Devan. 01 November 2013 (has links)
Small hydro generation refers to generating capacity of less than 10 MW with the most common being Run-of-River. In South Africa, the level of rural electrification is approximately 50 percent with most of the energy needs being met with biomass fuels. The purpose of this study was to investigate the hydropotential regions that were identified by Eskom and the Department of Minerals and Energy in 2002 and determine sites for small scale development for rural electrification purposes. Technical and feasible analyses were carried out in order to assess the applicability of this kind of energy generating system. The aim of this study was to consider the Free Basic Electrification policy and Solar Home Systems to assess the electrical demand of rural households and possible funding transfer scheme respectively. Furthermore, to formulate an appropriate methodology that can be used given the available data and resources currently available in South Africa. In total, six sites were identified and analysed in this paper, namely: (1) Berg River at gauge G1H013, (2) Mzimvubu River at gauge T3H008, (3) Orange River at gauge D1H003, (4) Mlambonja River at gauge V1H041, (5) Thukela River at gauge V1H002 and (6) Mkomazi River at gauge U1H005 which are in the Eastern Cape, Western Cape and KwaZulu-Natal Provinces. Flow gauge data were analysed in order to develop monthly mean Flow Duration Curves which were used to determine the design flow, power generation (through Power Duration Curve construction) and renewable energy potentially produced from each scheme. Costing functions were utilised in order to determine the initial capital cost of the system which was used to assess the project’s feasibility. In order to predict potential power output of the schemes, the streamflow and hydraulic head of the six rivers were assessed. The potential renewable energy production ranged from about 240 to 6060 MWh/year. Through this energy production, it was found between 165 and 10100 houses could be electrified depending on the electrical allowance provided. This significantly exceeds existing housing numbers. Costing bands ranged from 3 – 7 R/kWh which was high but within reason based on the community income and the transfer of the Solar Home Systems pricing policy. The results of this study provide a good foundation for future work in the estimation of hydropower potential in South Africa and will hopefully be a stepping stone to better estimation of both technical and exploitable hydropower potential for South Africa. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2012.
2

Techno-economic analysis of an off-grid micro-hydrokinetic river system as a remote rural electrification option

Koko, Sandile Phillip January 2014 (has links)
Thesis (M. Tech. (Electrical Engineering )) - Central University of Technology, Free State, 2014 / Remote rural electrification via grid-extension is a challenging solution due to high connection costs and low electricity consumption rate. As a result, it is difficult to recover the initial investment costs. Therefore, electrification is made possible by means of the commonly used off-grid approaches such as solar, wind, diesel generator and conventional micro-hydro. However, owing to non-continuous availability of sunlight and wind, high cost of diesel fuel, and requirements for construction of diversion weirs, these off-grid approaches might not offer a cost-effective and reliable solution to low income rural residents. There are many rural communities throughout the world without access to grid electricity and with access to flowing water. An off-grid micro-hydrokinetic river (MHR) system is one of the promising technologies to be used in remote rural areas with flowing water. It can bring sustainable improvement to their quality of life due to its high energy density and minimal environmental impact. This technology is still in the development stage and there is a lack of application, especially in rural areas. Hence, this study investigates the current status of MHR technology in rural applications. To demonstrate the economic feasibility of an off-grid MHR system, a rural site with multiple energy sources within South Africa has been used. The economic benefit offered by this proposed system at the selected site is compared to the economic benefits offered by other commonly used standalone systems such a solar, wind and diesel generator (DG). This economic comparison has been performed by making use of a Hybrid Optimization Model for Electric Renewable (HOMER) simulation tool. Grid extension has also been used as a comparison method for obtaining an economical distance between grid lines and the remote rural site. The results highlighted the acceptable economic performance of the MHR system. Finally, most of the available modelling and simulation tools for mechanical and electrical systems are not equipped with hydrokinetic modules. Hence, an MHR system model has been developed in MATLAB/Simulink in order to study its dynamic performance as submitted to variable water resource. Its performance has then been compared to the performance of a wind system counterpart for generating the same amount of electrical power. This proved/verified that the proposed system can generate electricity markedly cheaper than a wind system even in areas with adequate wind resource within South Africa.
3

Techno-economic analysis of an off-grid micro-hydrokinetic river system as a remote rural electrification option

Koko, Sandile Phillip January 2014 (has links)
Thesis (M. Tech. (Electrical Engineering )) - Central University of Technology, Free State, 2014 / Remote rural electrification via grid-extension is a challenging solution due to high connection costs and low electricity consumption rate. As a result, it is difficult to recover the initial investment costs. Therefore, electrification is made possible by means of the commonly used off-grid approaches such as solar, wind, diesel generator and conventional micro-hydro. However, owing to non-continuous availability of sunlight and wind, high cost of diesel fuel, and requirements for construction of diversion weirs, these off-grid approaches might not offer a cost-effective and reliable solution to low income rural residents. There are many rural communities throughout the world without access to grid electricity and with access to flowing water. An off-grid micro-hydrokinetic river (MHR) system is one of the promising technologies to be used in remote rural areas with flowing water. It can bring sustainable improvement to their quality of life due to its high energy density and minimal environmental impact. This technology is still in the development stage and there is a lack of application, especially in rural areas. Hence, this study investigates the current status of MHR technology in rural applications. To demonstrate the economic feasibility of an off-grid MHR system, a rural site with multiple energy sources within South Africa has been used. The economic benefit offered by this proposed system at the selected site is compared to the economic benefits offered by other commonly used standalone systems such a solar, wind and diesel generator (DG). This economic comparison has been performed by making use of a Hybrid Optimization Model for Electric Renewable (HOMER) simulation tool. Grid extension has also been used as a comparison method for obtaining an economical distance between grid lines and the remote rural site. The results highlighted the acceptable economic performance of the MHR system. v Finally, most of the available modelling and simulation tools for mechanical and electrical systems are not equipped with hydrokinetic modules. Hence, an MHR system model has been developed in MATLAB/Simulink in order to study its dynamic performance as submitted to variable water resource. Its performance has then been compared to the performance of a wind system counterpart for generating the same amount of electrical power. This proved/verified that the proposed system can generate electricity markedly cheaper than a wind system even in areas with adequate wind resource within South Africa.
4

The use of Water Point Mapping (WPM) as a tool to assess improved water resources in rural communities

Taonameso, Solomon 05 1900 (has links)
MSc (Microbiology) / Department of Microbiology / See the attached abstract below

Page generated in 0.0542 seconds