• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • Tagged with
  • 34
  • 34
  • 34
  • 34
  • 34
  • 13
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The use of Water Point Mapping (WPM) as a tool to assess improved water resources in rural communities

Taonameso, Solomon 05 1900 (has links)
MSc (Microbiology) / Department of Microbiology / See the attached abstract below
32

An evaluation of urban household water demand and consumption in Vhembe District: a case study of Makhado Local Municipality, Limpopo, South Africa

Ramulongo, Luvhimba 05 1900 (has links)
MENVM / Department of Geography and Geo-Information Science / See the attached abstract below
33

Faecal contamination pathways and prevalence of diarrheal pathogens in rural households with and without improved sanitation facilities

Murivhame, Lavhelesani Given 18 September 2017 (has links)
MSc (Microbiology) / Department of Microbiology / See the attached abstract below
34

Water security in rural Limpopo in a changing climate: A study of the Greater-Giyani Local Municipality, South Africa

Mmbadi, Elelwani January 2019 (has links)
MENVSC / Department of Geography and Geo-Information Sciences / Many rural communities of South Africa are living without adequate water supplies mainly due to historical lack of infrastructure and effective water reticulation systems. Day to day challenges of accessing water from distant boreholes and rivers are a reality particularly for women and children in rural Limpopo. This study investigates the nature and extent of water supply problems and how communities are living without adequate water in three rural communities of Greater-Giyani Local Municipality in South Africa. The study area lies in a semi-arid region which regularly experiences climate extremes such as droughts and floods which can reduce the ability of the municipality to supply water. Primary data was collected through questionnaires, key informant interviews and field observations while population, climate and hydrological data are also analyzed. A mixed methods research design was employed using qualitative methods such as content analysis whilst quantitative methods were dominated by time series analysis techniques and online interactive climate platforms such as the Climate Engine. It was found that households, schools and clinics in the study area rely mainly on boreholes for water supply but sometimes rivers supply those living nearby. An incomplete and poor water reticulation system coupled with erratic and shortening summer rainfall seasons are some of the major causes of water shortages in the study area. In order to cope with inadequate water, community members and public institutions in the study area have drilled boreholes and the sustainability of groundwater in the area is not well established. During summer, most households and institutions practise rainwater harvesting while a few resort to purchasing water from vendors. Despite these challenges which are not well documented, it was concluded that most of the rural poor households and institutions in the study area are well adapted to cope with water scarcity in the short term, while being vulnerable in the long term due to population growth and climate change. The study recommends the need for government and municipalities to invest in water reticulation systems in the long term whilst providing water to affected rural communities through water tankers, drilling more boreholes and maintenance of existing ones. Lessons learnt from this study may be useful to other municipalities across South Africa that are grappling with challenges of water access and supply. / NRF

Page generated in 0.0832 seconds