• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wave Loads on a Submerged Intake Structure in the Surf Zone

Hecimovich, Mark M.L. 12 March 2013 (has links)
Sea water intake structures submerged in the surf zone are used to provide water for cooling processes in large facilities such as power plants and refineries. Structures submerged in the surf zone are subject to large forces from breaking waves. To study these forces induced from realistic sea state conditions, a physical model of an intake structure submerged in the wave breaking zone was constructed and subjected to a wide spectrum of regular and irregular waves. The model structure was designed in a manner so force measurement could be isolated to separate components of the structure. The data of peak forces on the structure was analyzed for correlations with varying irregular wave properties. Using the results of forcing on the structure from regular wave tests, drag and inertia coefficients for use in the Morison equation were determined for each separate component and configuration of the structure. These force coefficients were plotted against various wave properties to analyze correlations with wave conditions. Finally, the force coefficients for the structure were used with the Morison equation and current data from the experiments to successfully model forcing on the structure during irregular wave tests.
2

Wave Loads on a Submerged Intake Structure in the Surf Zone

Hecimovich, Mark M.L. 12 March 2013 (has links)
Sea water intake structures submerged in the surf zone are used to provide water for cooling processes in large facilities such as power plants and refineries. Structures submerged in the surf zone are subject to large forces from breaking waves. To study these forces induced from realistic sea state conditions, a physical model of an intake structure submerged in the wave breaking zone was constructed and subjected to a wide spectrum of regular and irregular waves. The model structure was designed in a manner so force measurement could be isolated to separate components of the structure. The data of peak forces on the structure was analyzed for correlations with varying irregular wave properties. Using the results of forcing on the structure from regular wave tests, drag and inertia coefficients for use in the Morison equation were determined for each separate component and configuration of the structure. These force coefficients were plotted against various wave properties to analyze correlations with wave conditions. Finally, the force coefficients for the structure were used with the Morison equation and current data from the experiments to successfully model forcing on the structure during irregular wave tests.
3

Wave Loads on a Submerged Intake Structure in the Surf Zone

Hecimovich, Mark M.L. January 2013 (has links)
Sea water intake structures submerged in the surf zone are used to provide water for cooling processes in large facilities such as power plants and refineries. Structures submerged in the surf zone are subject to large forces from breaking waves. To study these forces induced from realistic sea state conditions, a physical model of an intake structure submerged in the wave breaking zone was constructed and subjected to a wide spectrum of regular and irregular waves. The model structure was designed in a manner so force measurement could be isolated to separate components of the structure. The data of peak forces on the structure was analyzed for correlations with varying irregular wave properties. Using the results of forcing on the structure from regular wave tests, drag and inertia coefficients for use in the Morison equation were determined for each separate component and configuration of the structure. These force coefficients were plotted against various wave properties to analyze correlations with wave conditions. Finally, the force coefficients for the structure were used with the Morison equation and current data from the experiments to successfully model forcing on the structure during irregular wave tests.

Page generated in 0.0883 seconds