• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wave Loads on a Submerged Intake Structure in the Surf Zone

Hecimovich, Mark M.L. 12 March 2013 (has links)
Sea water intake structures submerged in the surf zone are used to provide water for cooling processes in large facilities such as power plants and refineries. Structures submerged in the surf zone are subject to large forces from breaking waves. To study these forces induced from realistic sea state conditions, a physical model of an intake structure submerged in the wave breaking zone was constructed and subjected to a wide spectrum of regular and irregular waves. The model structure was designed in a manner so force measurement could be isolated to separate components of the structure. The data of peak forces on the structure was analyzed for correlations with varying irregular wave properties. Using the results of forcing on the structure from regular wave tests, drag and inertia coefficients for use in the Morison equation were determined for each separate component and configuration of the structure. These force coefficients were plotted against various wave properties to analyze correlations with wave conditions. Finally, the force coefficients for the structure were used with the Morison equation and current data from the experiments to successfully model forcing on the structure during irregular wave tests.
2

Wave Loads on a Submerged Intake Structure in the Surf Zone

Hecimovich, Mark M.L. 12 March 2013 (has links)
Sea water intake structures submerged in the surf zone are used to provide water for cooling processes in large facilities such as power plants and refineries. Structures submerged in the surf zone are subject to large forces from breaking waves. To study these forces induced from realistic sea state conditions, a physical model of an intake structure submerged in the wave breaking zone was constructed and subjected to a wide spectrum of regular and irregular waves. The model structure was designed in a manner so force measurement could be isolated to separate components of the structure. The data of peak forces on the structure was analyzed for correlations with varying irregular wave properties. Using the results of forcing on the structure from regular wave tests, drag and inertia coefficients for use in the Morison equation were determined for each separate component and configuration of the structure. These force coefficients were plotted against various wave properties to analyze correlations with wave conditions. Finally, the force coefficients for the structure were used with the Morison equation and current data from the experiments to successfully model forcing on the structure during irregular wave tests.
3

Wave Loads on a Submerged Intake Structure in the Surf Zone

Hecimovich, Mark M.L. January 2013 (has links)
Sea water intake structures submerged in the surf zone are used to provide water for cooling processes in large facilities such as power plants and refineries. Structures submerged in the surf zone are subject to large forces from breaking waves. To study these forces induced from realistic sea state conditions, a physical model of an intake structure submerged in the wave breaking zone was constructed and subjected to a wide spectrum of regular and irregular waves. The model structure was designed in a manner so force measurement could be isolated to separate components of the structure. The data of peak forces on the structure was analyzed for correlations with varying irregular wave properties. Using the results of forcing on the structure from regular wave tests, drag and inertia coefficients for use in the Morison equation were determined for each separate component and configuration of the structure. These force coefficients were plotted against various wave properties to analyze correlations with wave conditions. Finally, the force coefficients for the structure were used with the Morison equation and current data from the experiments to successfully model forcing on the structure during irregular wave tests.
4

Scale Effects On The Formation Of Vortices At Intake Structures

Gurbuzdal, Ferhat Aral 01 October 2009 (has links) (PDF)
In the present study, possible scale effects on the formation of air-entraining vortices at horizontal intakes are studied experimentally. Basic dimensionless parameters that govern the onset of vortices at a horizontal intake in a model and a prototype are stated by dimensional analysis. Series of experiments are conducted on four intake pipes of different diameters located in a large reservoir. The relationship of critical submergence ratio with other dimensionless parameters is considered for a given Froude number and it is found out that the critical submergence ratio is affected by model length scale ratio and its natural result of side-wall clearance ratio and Reynolds number differences between model and prototypes. It is observed that, side-wall clearance ratio is not effective on the critical submergence ratio after it exceeds about 6. In addition to this, Reynolds number limit, beyond which viscous forces do not affect the vortex flow, is found out to be increasing with the increase in Froude number. An empirical relationship, which gives the critical submergence ratio as a function of Froude number, side-wall clearance ratio and Reynolds number is obtained by using data collected in the experiments.

Page generated in 0.0703 seconds