Spelling suggestions: "subject:"have motion, theory off."" "subject:"have motion, theory oof.""
101 |
System identification methodology for a wave adaptive modular unmanned surface vehicleUnknown Date (has links)
The design, implementation, and testing of an experimental setup intended to evaluate the dynamic maneuvering performance of the Wave Adaptive Modular Vessel (WAM-V) class USV12, a 3.7 meter unmanned surface vehicle (USV) is described. A comprehensive sensor package was designed, fabricated and assembled to record the vehicle's dynamic response to various control inputs. All subsystems were fabricated and installed on a test vehicle, GUSS, and full system, open-loop maneuvering tests were conducted to show validity of data collection technique. Simulations were performed using model parameters found in the literature to create a "simulated experimental" data set, upon which system identification techniques were used to rediscover a suitable model with similar parameterization. Combined, the sensor package and the method for creating this model support future work in the design of automatic control, navigation, and guidance systems for the WAM-V USV12. / by Janine L. Mask. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
|
102 |
Test platform development for measuring surface effect ship response to wave loadsUnknown Date (has links)
The goal of this thesis is to develop a test platform for measuring surface effect ship (SES) response to wave loads. The platform is designed and built incorporating a self-propelled vehicle with data acquisition and navigation capabilities. Theoretical analysis is performed, various hardware and electronic parts are designed and built and software applications developed. Wave tank experiments are conducted for test platform evaluation and determination of vehicle response to a range of wave conditions. Furthermore, a three-dimensional model of the AIRCAT scale model SES is created. The theoretical analysis shows that the scale effects in some cases are great, so resonance phenomena cannot be observed. The experimental results clearly show that the heave, pitch and aircushion excess pressure fluctuations increase as the air-blower input level increases. The bow skirt arrangement needs improvements and further experimentation is necessary in order to draw conclusions about the wave loads applied on the skirt. / by Nicholas Kouvaras. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
103 |
Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the south China seaCardona Orozco, Yuley Mildrey 08 July 2011 (has links)
The South China Sea is a marginal basin with a complex circulation influenced by the East Asian Monsoon, river discharge and intricate bathymetry. As a result, both the mesoscale eddy field and the near-inertial energy distribution display large spatial variability and they strongly influence the oceanic transport and mixing.
With an ensemble of numerical integrations using a regional ocean model, this work investigates how the temporal resolution of the atmospheric forcing fields modifies the horizontal and vertical velocity patterns and impacts the transport properties in the basin. The response of the mesoscale circulation in the South China Sea is investigated under three different forcing conditions: monthly, daily and six-hourly momentum and heat fluxes. While the horizontal circulation does not display significant differences, the representation of the vertical velocity field displays high sensitivity to the frequency of the wind forcing. If the wind field contains energy at the inertial frequency or higher (daily and six-hourly cases), then Vortex Rossby waves and near inertial waves are excited as ageostrophic expression of the vigorous eddy field. Those waves dominate the vertical velocity field in the mixed layer (vortex Rossby waves) and below the first hundred meters (near inertial waves) and they are responsible for the differences in the vertical transport properties under the various forcing fields as quantified by frequency spectra, vertical velocity profiles and vertical dispersion of Lagrangian tracers.
|
104 |
Analysis of wave motion in irregular layered media using a finite-element perturbation methodIkeda Junior, Isamu, 1969- 21 September 2012 (has links)
A technique that allows for nonparallel interfaces and lateral inhomogeneities in an irregular layered medium is described. The formulation combines a semidiscrete finite-element technique with a perturbation method, providing an approximate treatment of wave propagation in irregular layered media. The procedure treats the irregularities as perturbations with respect to a reference, horizontally-layered, laterally-homogeneous medium and produces approximations of the perturbed wave motion with little additional computation effort. Within the framework of the method, consistent transmitting boundaries and other semidiscrete hyperelements as well as Green’s functions, already available for regular layered media, can be reformulated. The method is relevant in problems of foundation dynamics, ground response to seismic waves and site characterization. Example problems are presented toward evaluation of the effectiveness of the method. / text
|
105 |
Seismic characterization of naturally fractured reservoirsBansal, Reeshidev, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
106 |
Wave propagation in viscoelastic and poroelastic continua : a boundary element approach /Schanz, Martin, January 2001 (has links)
Techn. Univ., Habil.-Schr.--Braunschweig, 2001. / Literaturverz.S. [159] - 168.
|
107 |
Dynamics of fluid-filled porous media under wave action : Excitation of surf-beats in the oceanFoda, Mostafa Ameen January 1980 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographies. / by Mostafa Ameen Foda. / Sc.D.
|
108 |
A wave-kinetic numerical method for the propagation of optical wavesPack, Jeong-Ki January 1985 (has links)
A new wave-kinetic numerical method for the propagation of optical waves in weakly inhomogeneous media is discussed, and it is applied to several canonical problems: the propagation of beam and plane waves through a weak 3-D ( or 2-D ) Gaussian eddy. The numerical results are also compared to those from a Monte-Carlo simulation and the first Born approximation. Within the validity of the Liouville approximation, the Wigner distribution function ( WDF ) is conserved along the conventional ray trajectories, and, thus, by discretizing the input WDF with Gaussian beamlets, we can represent the output WDF as a sum of Gaussians, from which irradiance can be obtained by analytical integration of each Gaussian with respect to wavevector. Although each Gaussian beamlet propagates along a geometrical optics ray trajectory, it can correctly describe diffraction effects, and the propagation of optical waves through caustics or ray crossings. The numerical results agree well with either the Monte-Carlo method or the first Born approximation in regions where one or both of these are expected to be valid. / M.S.
|
109 |
Dispersion analysis of nonlinear periodic structuresManktelow, Kevin Lee 29 March 2013 (has links)
The present research is concerned with developing analysis methods for analyzing and exploring finite-amplitude elastic wave propagation through periodic media. Periodic arrangements of materials with high acoustic impedance contrasts can be employed to control wave propagation. These systems are often termed phononic crystals or metamaterials, depending on the specific design and purpose. Design of these systems usually relies on computation and analysis of dispersion band structures which contain information about wave propagation speed and direction. The location and influence of complete (and partial) band gaps is a particularly interesting characteristic. Wave propagation is prohibited for frequencies that correspond to band gaps; thus, periodic systems behave as filters, wave guides, and lenses at certain frequencies. Controlling these behaviors has typically been limited to the manufacturing stage or the application of external stimuli to distort material configurations. The inclusion of nonlinear elements in periodic unit cells offers an option for passive tuning of the dispersion band structure through amplitude-dependence. Hence, dispersion analysis methods which may be utilized in the design of nonlinear phononic crystals and metamaterials are required. The approach taken herein utilizes Bloch wave-based perturbation analysis methods for obtaining closed-form expressions for dispersion amplitude-dependence. The influence of material and geometric nonlinearities on the dispersion relationship is investigated. It is shown that dispersion shifts result from both self-action (monochromatic excitation) and wave-interaction (multi-frequency excitation), the latter enabling dynamic anisotropy in periodic media. A particularly novel aspect of this work is the ease with which band structures of discretized systems may be analyzed. This connection enables topology optimization of unit cells with nonlinear elements. Several important periodic systems are considered including monoatomic lattices, multilayer materials, and plane stress matrix-inclusion configurations. The analysis methods are further developed into a procedure which can be implemented numerically with existing finite-element analysis software for analyzing geometrically-complex materials.
|
110 |
Dynamic positioning and motion mitigation of a scaled sea basing platformUnknown Date (has links)
A 6-Degree Of Freedom (DOF) numeric model and computer simulation along with the 1/10th scale physical model of the Rapidly Deployable Stable Platform (RDSP) are being developed at Florida Atlantic University in response to military needs for ocean platforms with improved sea keeping characteristics. The RDSP is a self deployable spar platform with two distinct modes of operation enabling long distance transit and superior seakeeping. The focus of this research is the development of a Dynamic Position (DP) and motion mitigation system for the RDSP. This will be accomplished though the validation of the mathematical simulation, development of a novel propulsion system, and implementation of a PID controller. The result of this research is an assessment of the response characteristics of the RDSP that quantifies the performance of the propulsion system coupled with active control providing a solid basis for further controller development and operational testing. / by Sean P. Marikle. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
|
Page generated in 0.1148 seconds