• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Non-Pyramidal Rectangular-to-Trough Waveguide Transition and Pattern Reconfigurable Trough Waveguide Antenna

Loizou, Loizos 2010 December 1900 (has links)
Trough waveguides (TWG) have been utilized in a variety of radio frequency (RF) and other related applications including radar, the treatment of hypothermia and in the generation of plasmas. Perturbing the guided wave in these structures with blocks, rods, dielectrics, and other structures can create reconfigurable periodic line sources. These trough waveguide antennas (TWA) are then capable of providing both fixedfrequency and frequency-dependent beam steering. This was originally performed using electro-mechanical “cam-and-gear” mechanisms. Previous work related to the excitation of TWG and the performance of TWA topologies are limited when compared to more common antenna designs, yet they possess many desirable features that can be exploited in a modern system. This thesis will examines an S-band rectangular-to-trough waveguide transition and trough guide antenna that has been designed for broadband reconfigurable antenna applications considering as well the airflow characteristics for sensing applications. The design, fabrication, and electromagnetic performance (mode conversion, impedance matching, and antenna performance) are discussed, including the use of metallic cantilever perturbations placed along the troughguide sidewalls that are designed to provide improved impedance matching when steering the beam from the backward quadrant through broadside, towards the forward quadrant. Impedance matching techniques such as use of circular holes at the edge of each actuated cantilever are used to reduce power reflections and provide a low voltage standing wave ratio (VSWR) along the S-band. Finite element simulations will provide a demonstration of the airflow and turbulence characteristics throughout the entire structure, where the metallic cantilevers are used to manipulate the flow of air, to distribute it across the surfaces of the structure better and improve its potential for sensing operations.
2

Self-Adjoint Sensitivities of S-Parameters with Time-Domain TLM Electromagnetic Solvers

Li, Ying 06 1900 (has links)
<p> The thesis presents an efficient self-adjoint approach to the S-parameter sensitivity analysis based on full-wave electromagnetic (EM) time-domain simulations with two commonly used numerical techniques: the finite-difference time-domain (FDTD) method and the transmission-line matrix (TLM) method. Without any additional simulations, we extract the response gradient with respect to all the design variables making use of the full-wave solution already generated by the system analysis. It allows the computation of the S-parameter derivatives as an independent post-process with negligible overhead. The sole requirement is the ability of the solver to export the field solution at user-defined points. Most in-house and commercial solvers have this ability, which makes our approach readily applicable to practical design problems.</p> <p> In the TLM-based self-adjoint techniques, we propose an algorithm to convert the electrical and magnetic field solutions into TLM voltages. The TLM-based discrete adjoint variable method (AVM) is originally developed to use incident and reflected voltages as the state variables. Our conversion algorithm makes the TLM-AVM method applicable to all time-domain commercial solvers, FDTD simulators included, with comparable accuracy and less memory overhead. Our approach is illustrated through waveguide examples using a TLM-based commercial simulator.</p> <p> Currently, our TLM-based self-adjoint approach is limited to loss-free homogeneous problems. However, our FDTD-based self-adjoint approach is valid for lossy inhomogeneous cases as well. The FDTD-based self-adjoint technique needs only the E-field values as the state variables. In order to make it also applicable to a TLM-based solver, whose mesh grid is displaced from the FDTD grid, we interpolate the E-field solution from the TLM mesh to that on the FDTD mesh. Our FDTD-based approach is validated through the response derivatives computation with respect to both shape and constitutive parameters in waveguide and antenna structures. The response derivatives can be used not only to guide a gradient-based optimizer, but also to provide a sufficient good initial guess for the solution of nonlinear inverse problems.</p> <p> Suggestions for further research are provided.</p> / Thesis / Master of Applied Science (MASc)
3

Techniques for pattern control of a dielectric rod antenna suitable for use in mobile communications

Cox, Gavin J. January 2002 (has links)
This thesis describes the development of antennas suitable for mobile coinmunication systems based on a dielectric rod antenna fed from circular waveguide. Pattern control of the antenna is implemented using a combination of Frequency Selective Surface (FSS) elements and metallic endcaps placed on the antenna Both linear and circular polarised feeds have been made for these antennas to ensure they are suitable for a wide range of applications. The suitability of the dominant and next, higher order, waveguide mode were investigated and conclusions drawn as to their suitability for this type of antenna. The antennas were extensively modelled using a commercial TLM based solver and the results of these simulations were compared to the comprehensive set of antenna pattern measurements and S-parameter measurements obtained for the prototype antennas.
4

Non-Invasive Microwave Hyperthermia

Habash, Riadh W Y 04 1900 (has links)
Presented in this thesis are the following theoretical investigations carried out on the non-invasive microwave hyperthermia of malignant tumours in the human body: Fundamental concepts of electromagnetic wave propagation through a biomass and its interaction with it, are discussed. Various types of applicators used for producing hyperthermia in a biomass, are also discussed. Propagation of a uniform plane electromagnetic wave through a human body is investigated for the general case of oblique incidence. Various models used for the human body have been discussed and the planar multilayer model has been chosen for this study. Reflection and transmission coefficients for both the parallel and perpendicular linear polarisations of the wave, have been determined. For normal incidence, power transfer ratio at the muscle has been defined and calculated at 433, 915 and 2450 MHz (ISM frequencies). Efects of skin thickness and also of fat thickness, on the power transfer ratio at muscle, have been studied. Effects of the thickness and dielectric constant of a bolus, and also of the dielectric constant of an initial layer, on the power transfer ratio, have been studied and their optimum values obtained at the ISM frequencies. For microwave hyperthermia, 915 MHz is recommended as the frequency of operation. Steady-state solution of the bioheat transfer equation has been obtained, assuming the biomass to be a semi-infinite homogeneous medium. Effects of various physical parameters on the temperature profile in the biomass, have been studied. Also studied is the effect of the surface temperature on the magnitude, location and the width of the temperature peak attained in the biomass. A method to determine the microwave power and the surface temperature required to produce a prescribed temperature profile in the biomass, has been developed. The transient-state solution of the bioheat transfer equation has been obtained to study the building up of the temperature profile. Procedures for the design of an open-ended rectangular metal waveguide applicator and for estimating the total microwave power requirement to produce hyperthermia in the human body, have been developed. Performance of the applicators employing linear as well as planar arrays of open-ended rectangular metal waveguide antennas, has also been studied. In order to reduce the overall physical size of the applicators, filling up of the feed waveguide with a high dielectric constant but low loss material is suggested. A simple method of obtaining the elements of the array by partitioning a large aperture by using metal walls has been adopted. Calculation of the total microwave power required by various applicators for producing hyperthermia at various depths in a biomas, have been made and a comparison of the performance of various applicators, has been presented.
5

Návrh anténní řady pro MSPS radar pracující v pásmu L / Design of antenna array for MSPS radar operating in L-band

Gaja, Tomáš January 2017 (has links)
This thesis deals with the design of an antenna array for the MSPS Radar L band application. The introduction covers a research for a suitable antenna element which can be used as an element of steerable antenna array. The control of the main beam is enabled in the vertical plane. Based on a presented theory, a slotted waveguide antenna array with an omnidirectional radiation in the vertical plane is designed. The operating frequency is set to 1 367.5 MHz. Slotted array achieves 20° width of the main beam in elevation plane. The achieved gain of the array is 9.15 dBi. Further attention of this work is focused on the beam steering that is allowed by diode switching. The last part of the thesis presents manufacturing process of the designed model. The CST Microwave Studio software was used for the antenna array designing process.
6

[en] CHIPLESS RFID SENSOR USING GRAPHENE BASED STRUCTURES / [pt] SENSOR RFID SEM CHIP UTILIZANDO ESTRUTURAS BASEADAS EM GRAFENO

RENATO SILVEIRA FEITOZA 14 November 2017 (has links)
[pt] Estruturas baseadas em grafeno como óxido de grafeno (OG) e óxido de grafeno reduzido (OGr) vêm sendo amplamente utilizadas em aplicações de sensoriamento resistivo de gás. Entretanto, poucos projetos são efetuados utilizando métodos pervasivos e não intrusivos, que são importantes para aplicações onde intervenções podem ser problemáticas. Este trabalho apresenta a implementação de protótipos de sensores sem fio de baixo custo baseados na tecnologia de RFID sem chip, para sensoriamento de vapor de álcool, utilizando uma topologia de antena miniaturizada baseada em Metamateriais (MTMs) carregada com OGr. Simulações utilizando o método dos elementos finitos são efetuadas de forma a encontrar o melhor local para deposição das estruturas sensíveis ao vapor de álcool. É observado que a estrutura responde a variações de resistividade de OGr apenas para uma determinada faixa de valores. O tempo de redução térmica de OG necessário para atingir este espectro de valores é experimentalmente determinado, estando entre 60 e 90 min à 200 Graus Celsius. Amostras de GO são fabricadas utilizando o método de Hummer modificado, e são depositadas nos gaps das antenas. Posteriormente, são reduzidas por 60, 75 e 90 minutos. O setup de medição consistiu em medições do coeficiente de reflexão em banda X. Após um determinado tempo para estabilização, álcool isopropílico e também etanol são colocados em contato com a amostra em um recipiente fechado por 1h30, e a resposta foi observada. Resultados com sensibilidade de até 11,5 por cento foram obtidos. / [en] Graphene oxide (GO) and reduced graphene oxide (rGO) based structures have been widely applied for resistive gas sensing applications. However, few projects are developed using pervasive and non-intrusive methods, which are important for applications where intervention can be an issue. This work presents the implementation of low-cost wireless sensor prototypes based on chipless RFID technology, for alcohol vapor sensing, by using a metamaterial (MTM) based miniaturized antenna loaded with rGO. Simulations are performed using finite element method in order to find the best place to deposit the alcohol vapor sensitive structures. It is observed that the structure responds to resistivity variations only for a determined range of values. The GO reduction time necessary to reach this spectrum of values is experimentally determined, and it is found to be between 60 and 90 min at 200 Celsius degrees. GO samples are synthesized using a modified Hummer s method, and deposited in the gaps of the antenna structures. Later, they are reduced for 60, 75 and 90 min. The measurement setup consists in reflection coefficient characterization at X band frequencies. After a stabilization time, isopropyl alcohol and ethanol are put in contact with the samples in a closed container for 1h30, and the response is observed. Sensitivities up to 11,5 percent are obtained.
7

Contribution à l'étude et la conception d'antennes pour la génération d'ondes radiofréquences transportant du moment angulaire orbital / Contribution to the study and design of antennas for the generation of radio waves bearing orbital angular momentum

Wei, Wenlong 21 November 2016 (has links)
Il est bien connu dans la théorie de Maxwell que le rayonnement électromagnétique (EM) d'une onde porte à la fois du moment linéaire (énergie) et du moment angulaire. Ce dernier possède deux parties: le Moment Angulaire de Spin (ou SAM) qui est également connu sous le nom de la polarisation et le Moment Angulaire Orbital (ou OAM). Le SAM ne comprend que deux états (gauche et droite) et est utilisé en télécommunications pour doubler la capacité du canal. Par contre, le moment angulaire orbital (OAM) peut en théorie, avoir un nombre infini d'états appelés les modes OAM. Par conséquent, en radiofréquences, les premières applications de l'OAM ont été proposées dans le domaine des communications sans fil. Mais, tout d'abord, il est nécessaire de développer des antennes générant de telles ondes. L'objectif de cette thèse est de concevoir des antennes pour générer des ondes ayant un OAM. Le manuscrit se décompose en trois parties. Dans la première partie, un réseau d'antennes « patches » utilisant un déphaseur original est développé et testé. Ce réseau génère une onde ayant de l'OAM. Dans la deuxième partie, une cavité Fabry-Perot (FP) est utilisée pour apporter plus de directivité à ce réseau d'antennes. Enfin, la troisième partie consiste à générer des ondes guidées possédant du moment OAM. Ces ondes ont ensuite été utilisées pour exciter des antennes en cornet et rayonner des faisceaux directifs transportant du moment angulaire orbital. / It is well known from Maxwell’s theory that electromagnetic (EM) radiation carries both linear momentum (energy) and angular momentum. The latter has two parts: Spin Angular Momentum (SAM) which corresponds to the polarization of an EM wave and Orbital Angular Momentum (OAM) which is associated with the spatial distribution of an EM wave. The SAM has only two states (left and right) and is used to double the channel capacity in telecommunications. On the other hand, the OAM can theoretically have an infinite number of states called the OAM modes. Therefore, the first applications of OAM have been proposed in wireless communications at radio frequencies. However, first of all, it is necessary to develop the antennas for generating such waves. The objective of this thesis is to design the antennas for the generation of radio waves bearing OAM. The manuscript contains three parts. In the first part, an antenna using 4 patches and an original phase shifter is developed and tested to generate an OAM wave. In the second part, a Fabry-Perot (FP) cavity is used to enhance the directivity of this antenna. The third part is to generate guided OAM waves. Some horn antennas are used to radiate these waves with good directivity.

Page generated in 0.0511 seconds