• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Full-wave characterization of bi-dimensional cavities and its application to the design of waveguide filters and multiplexers

Carceller Candau, Carlos 16 May 2016 (has links)
[EN] Modern communications systems impose stringent requirements on the equipment that operates at microwave frequency, especially in the case of wireless communications. The design of passive components for these applications is contingent upon the availability of accurate electromagnetic (EM) modeling tools that can efficiently handle the complex geometry of these components. Despite the widespread use of mesh-based general-purpose computer-aided engineering (CAE) tools to perform final design verifications, their application during the optimization process is limited. Optimum designs require a large number of simulations, which are computationally expensive when performed by general purpose tools. Instead, microwave designers prefer to employ faster software tools tailored to specific geometries, such as waveguide components, multilayered structures, etc. Therefore, the development of faster and more efficient specialized EM tools has a direct impact on the design of microwave components, both quantitatively and qualitatively. Increasingly complex geometries are modeled more accurately, and may be incorporated into novel designs without penalizing development time and its associated costs. By doing so, passive components become more advanced and are able to fulfill stricter requirements. At the same time, new research and development opportunities arise in order to address the challenges posed by these advanced structures. The present thesis is focused on a specific type of waveguide cavity geometry: bi-dimensional structures of arbitrary shape. Most microwave components based on rectangular waveguides include these elements (bends, T-junctions, tapers, power-dividers, etc.), thus the scope of this work is wide. To characterize these structures, an efficient full-wave modal formulation is developed. Taking into account common properties of bi-dimensional structures, such as its electromagnetic symmetry, the resulting technique is very efficient and accurate. Thanks to the integration of this formulation into a CAE tool, a designer is able to solve complex systems that combine this type of element with components of vastly different shapes. The developed formulation is first applied to the analysis and design of passive components, such as filters, multiplexers and orthomode transducers. These examples are employed to validate the results, as well as to demonstrate the improvement that the proposed analysis technique represents over well-known commercial EM packages. Likewise, this formulation is combined with the tool SPARK3D to predict RF breakdown (multipactor and corona) in selected bi-dimensional structures. Then, novel implementations of waveguide quasi-elliptic filters, based on the interconnection of bi-dimensional cavities, are proposed. Special attention is paid to the realization of multiple transmission zeros (TZs) with tuning-less compact structures. First, a novel family of filters, known as hybrid-folded rectangular waveguide structures, is studied. Simple and flexible methods to prescribe the location of the transmission zeros realized by these structures are presented. Practical aspects related to their physical implementation are also discussed. Secondly, a compact and purely capacitive obstacle, capable of realizing multiple TZs, is presented and discussed. In both cases, multiple examples are given to illustrate the step-by-step process involved in the design of these structures. Finally, a systematic procedure for the design of wideband manifold-coupled multiplexers is proposed. To preven the generation of undesired resonances, stubs that connect the filters to the manifold are removed. Likewise, the manifold length is kept as short as possible. Following a simple procedure, based on analytical formulas and EM simulations, a good starting point for the final optimization of these structures is obtained. It has been applied to a wideband quadruplexer for passive intermodulation measurement at C-band. / [ES] Actualmente, los sistemas de comunicaciones imponen unos requisitos muy estrictos sobre el equipamiento en la banda de microondas. El diseño de estos componentes está supeditado, frecuentemente, a la disponibilidad de herramientas de modelado electromagnético (EM) que sean capaces de analizar geometrías complejas. A pesar del amplio uso de herramientas CAE (computer-aided engineering) de propósito general para la verificación final de prototipos, su potencial aplicación durante el proceso de diseño es limitada. Los diseños óptimos exigen realizar una gran cantidad de simulaciones EM. Dado que las simulaciones con estas técnicas tienen un alto coste computacional, los diseñadores suelen optar por emplear herramientas software especializadas en las estructuras que diseñan. Por tanto, el desarrollo de nuevas herramientas más precisas y eficientes ayudará a reducir el tiempo de diseño de estos productos, y con ello los costes asociados. Además, permitirá abrir nuevas líneas de investigación para responder a los retos que plantean geometrías cada vez más complejas. Esta tesis se centra en el desarrollo de una herramienta de análisis EM para un tipo concreto de estructuras: cavidades bidimensionales de sección arbitraria. Es habitual encontrar este tipo de estructuras en la mayoría de componentes implementados en guía rectangular. Por tanto, el rango de aplicación de la teoría desarrollada en esta tesis es muy amplio. En concreto, se ha desarrollado una nueva formulación basada en métodos modales que permite realizar una caracterización de onda completa de estas estructuras de forma eficiente y precisa. Al aprovechar su simetría geométrica y electromagnética, la herramienta desarrollada puede minimizar los cálculos a realizar, consiguiendo grandes velocidades de computación pero manteniendo una alta precisión. Gracias a la integración de esta formulación dentro de una herramienta CAE basada en métodos modales, se ofrece la posibilidad a los diseñadores de resolver sistemas muy complejos que combinan este tipo de cavidades con otros componentes de geometrías distintas. Esta formulación se aplica, en primer lugar, al análisis y diseño de componentes pasivos comunes, tales como filtros, multiplexores y OMTs. Estos ejemplo validan la herramienta desarrollada, y demuestran la significativa mejora que supone el uso de esta nueva técnica con respecto a otros paquetes software de análisis electromagnético. Asimismo, al combinar esta formulación con la herramienta SPARK3D se abre la posibilidad de predecir la aparición de fenómenos de descarga de alta potencia en determinadas estructuras bidimensionales. A continuación, se proponen nuevas formas de implementar filtros cuasi-elípticos basados en la interconexión de cavidades bi-dimensionales. Se hace especial hincapié en la realización de múltiples ceros de transmisión mediante estructuras compactas que no requieran sintonía. Por una parte se estudian los filtros hybrid-folded rectangular waveguide. Este trabajo incluye una discusión en profundidad sobre distintas implementaciones de este tipo de filtros. En ella se consideran aspectos prácticos relacionados con su uso e implementación física, que ofrecen al diseñador unos criterios claros para elegir la estructura que más se ajuste a sus especificaciones. Por otra parte se presenta un nuevo obstáculo de naturaleza capacitiva muy compacto, que permite la realización de múltiples ceros de transmisión incluso en estructuras en línea. En ambos casos se incluyen ejemplos de aplicación y se describe la metodología seguida para su diseño. Finalmente, se expone un procedimiento sistemático para diseñar multiplexores de banda ancha. Para prevenir la generación de resonancias indeseadas se evitan, en la medida de lo posible, las interconexiones mediante tramos cortos de guía. Siguiendo una metodología simple se consigue un excelente punto inicial para su optimización. La te / [CAT] Els actuals sistemes de comunicacions sense fils imposen uns requisits molt estrictes sobre l'equipament de la banda de microones. El disseny d'aquests components està supeditat, frequentment, a la disponibilitat de ferramentes de modelatge electromagèntic (EM) que siguen capaços de gestionar geometries complexes. Tot i l'ampli ús de ferramentes CAE (computer-aided engineering) de propòsit general per a la verificació final de prototips, la seua aplicació durant el procés de disseny és limitada. Els dissenys òptims exigeixen realitzar una gran quantitat de simulacions. Les simulacions amb aquestes tècniques tenen un alt cost computacional, per tant els dissenyadors solen optar per utilitzar ferramentes software especialitzades en les estructures que dissenyen. Per tant, el desenvolupament de noves tècniques d'anàlisi més precises i eficients ajudarà a reduir el temps de desenvolupament d'aquests productes, i dels seus costos associats. A més permetrà obrir noves línies d'investigació per respondre els reptes que plantegen geometries cada vegada més complexes. Aquesta tesi es centra en el desenvolupament d'una ferramenta d'anàlisi EM per a un tipus concret d'estructures: cavitats bidimensionals de forma arbitraria. És habitual trobar aquestes estructures en la majoria de components implementats en guia rectangular. Per tant, l'àmbit d'aplicació de la teoria presentada en esta tesi és molt ampli. En concret, s'ha desenvolupat una nova formulació basada en mètodes modals que permet realitzar una caracterització d'ona completa d'aquestes estructures de forma eficient i precisa. Aprofitant la seua simetria geomètrica i electromagnètica, la ferramenta desenvolupada pot minimitzar els càlculs a realitzar, aconseguint grans velocitats de càlcul mantenint una alta precisió. Gràcies a la integració d'aquesta formulació dins d'una ferramenta CAE basada en mètodes modals, s'ofereix la possibilitat als dissenyadors de resoldre sistemes molt complexos que combinen aquest tipus de cavitats amb altres components de diferent geometria. Aquesta formulació s'aplica, en primer lloc, a l'anàlisi i disseny de components passius comuns: filtres, multiplexors i OMTs. Aquests exemples serveixen per a validar la ferramenta desenvolupada, així com demostrar la significativa millora que suposa l'ús d'aquesta nova tècnica respecte d'altres paquets software d'anàlisi electromagnètic. Així mateix, mitjançant la combinació d'aquesta formulació amb la ferramenta SPARK3D s'obri la possibilitat de predir l'aparició de fenòmens de descàrrega d'alta potència en estructures bidimensionals. A continuació, es proposen noves formes d'implementar filtres quasi el-líptics en guia d'ona basats en la interconnexió de cavitats bidimensionals. Es fa especial èmfasi en la realització de múltiples zeros de transmissió mitjançant estructures compactes que no requereixen de sintonia. D'una banda s'estudien els filtres hybrid folded rectangular waveguide. Aquest treball inclou una discussió en profunditat sobre diferents implementacions d'aquest tipus de filtres. S'hi consideren aspectes pràctics relacionats amb el seu ús i implementació física, que ofereixen al dissenyador uns criteris clars per triar l'estructura que més s'ajuste a les seues especificacions. D'altra banda es presenta un nou obstacle de naturalesa capacitiva extremadament compacte, que permet la realització de múltiples zeros de transmissió fins i tot en estructures en línia. En els dos casos s'inclouen exemples d'aplicació i es descriu la metodologia seguida per al seu disseny. Finalment, s'exposa un procediment sistemàtic per dissenyar multiplexors de banda ampla. Per prevenir la generació de ressonàncies no desitjades s'eviten les interconnexions amb trams de guia curts. Seguint una metodologia simple, basada en fórmules analítiques i simulacions electromagnètiques, s'aconsegueix un excel-lent punt inicial per a l'optimització. / Carceller Candau, C. (2016). Full-wave characterization of bi-dimensional cavities and its application to the design of waveguide filters and multiplexers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64089 / TESIS
2

Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion Relations

Nikkhah, Hamdam January 2018 (has links)
The widespread adoption of photonic circuits requires the economics of volume manufacturing offered by integration technology. A Complementary Metal-Oxide Semiconductor compatible silicon material platform is particularly attractive because it leverages the huge investment that has been made in silicon electronics and its high index contrast enables tight confinement of light which decreases component footprint and energy consumption. Nevertheless, there remain challenges to the development of photonic integrated circuits. Although the density of integration is advancing steady and the integration of the principal components – waveguides, optical sources and amplifiers, modulators, and photodetectors – have all been demonstrated, the integration density is low and the device library far from complete. The integration density is low primarily because of the difficulty of confining light in structures small compared to the wavelength which measured in micrometers. The device library is incomplete because of the immaturity of hybridisation on silicon of other materials required by active devices such as III-V semiconductor alloys and ferroelectric oxides and the difficulty of controlling the coupling of light between disparate material platforms. Metamaterials are nanocomposite materials which have optical properties not readily found in Nature that are defined as much by their geometry as their constituent materials. This offers the prospect of the engineering of materials to achieve integrated components with enhanced functionality. Metamaterials are a class of photonic crystals includes subwavelength grating waveguides, which have already provided breakthroughs in component performance yet require a simpler fabrication process compatible with current minimum feature size limitations. The research reported in this PhD thesis advances our understanding of the structure-property relations of key planar light circuit components and the metamaterial engineering of these properties. The analysis and simulation of components featuring structures that are only just subwavelength is complicated and consumes large computer resources especially when a three dimensional analysis of components structured over a scale larger than the wavelength is desired. This obstructs the iterative design-simulate cycle. An abstraction is required that summarises the properties of the metamaterial pertinent to the larger scale while neglecting the microscopic detail. That abstraction is known as homogenisation. It is possible to extend homogenisation from the long-wavelength limit up to the Bragg resonance (band edge). It is found that a metamaterial waveguide is accurately modeled as a continuous medium waveguide provided proper account is taken of the emergent properties of the homogenised metamaterial. A homogenised subwavelength grating waveguide structure behaves as a strongly anisotropic and spatially dispersive material with a c-axis normal to the layers of a one dimensional multi-layer structure (Kronig-Penney) or along the axis of uniformity for a two dimensional photonic crystal in three dimensional structure. Issues with boundary effects in the near Bragg resonance subwavelength are avoided either by ensuring the averaging is over an extensive path parallel to boundary or the sharp boundary is removed by graded structures. A procedure is described that enables the local homogenised index of a graded structure to be determined. These finding are confirmed by simulations and experiments on test circuits composed of Mach-Zehnder interferometers and individual components composed of regular nanostructured waveguide segments with different lengths and widths; and graded adiabatic waveguide tapers. The test chip included Lüneburg micro-lenses, which have application to Fourier optics on a chip. The measured loss of each lens is 0.72 dB. Photonic integrated circuits featuring a network of waveguides, modulators and couplers are important to applications in RF photonics, optical communications and quantum optics. Modal phase error is one of the significant limitations to the scaling of multimode interference coupler port dimension. Multimode interference couplers rely on the Talbot effect and offer the best in-class performance. Anisotropy helps reduce the Talbot length but temporal and spatial dispersion is necessary to control the modal phase error and wavelength dependence of the Talbot length. The Talbot effect in a Kronig-Penny metamaterial is analysed. It is shown that the metamaterial may be engineered to provide a close approximation to the parabolic dispersion relation required by the Talbot effect for perfect imaging. These findings are then applied to the multimode region and access waveguide tapers of a multi-slotted waveguide multimode interference coupler with slots either in the transverse direction or longitudinal direction. A novel polarisation beam splitter exploiting the anisotropy provided by a longitudinally slotted structure is demonstrated by simulation. The thesis describes the design, verification by simulation and layout of a photonic integrated circuit containing metamaterial waveguide test structures. The test and measurement of the fabricated chip and the analysis of the data is described in detail. The experimental results show good agreement with the theory, with the expected errors due to fabrication process limitations. From the Scanning Electron Microscope images and the measurements, it is clear that at the boundary of the minimum feature size limit, the error increases but still the devices can function.

Page generated in 0.0559 seconds