• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 20
  • 12
  • 10
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 169
  • 169
  • 161
  • 126
  • 60
  • 47
  • 32
  • 29
  • 28
  • 27
  • 24
  • 22
  • 21
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Reconfigurable traffic grooming with differentiated reliability in DWDM mesh networks

Hu, Weiwei 01 May 2010 (has links)
Optical networks employing wavelength division multiplexing technology have been well recognized as the core networks for the next generation Internet. In such networks, any fiber cut or node failure may lead to huge data loss. Thus, reliability is of great importance in the design of modern high-speed networks. At the same time, traffic grooming is another important design objective since it addresses multi-granularity traffic. The traditional routing approaches with differentiated services do not consider the traffic grooming case or reconfiguration method. Therefore, they are not resource-efficient for the next generation Internet. In this dissertation, an effective reconfigurable traffic grooming with differentiated reliability scheme is proposed to efficiently use network resources. Compared with the conventional rerouting method, the proposed scheme makes the network more robust and immune from service interruptions. An integer linear programming (ILP) formulation is presented first. By solving the ILP formulation, an optimal solution is obtained for each incoming connection request. However, the solution is so time consuming, a heuristic algorithm is introduced to get an approximate optimal solution. The performance evaluation indicates that the connection blocking probability can be decreased greatly by the proposed scheme.
122

Wavelength-division-multiplexed Transmission Using Semiconductor Optical Amplifiers And Electronic Impairment Compensation

Li, Xiaoxu 01 January 2009 (has links)
Over the last decade, rapid growth of broadband services necessitated research aimed at increasing transmission capacity in fiber-optic communication systems. Wavelength division multiplexing (WDM) technology has been widely used in fiber-optic systems to fully utilize fiber transmission bandwidth. Among optical amplifiers for WDM transmission, semiconductor optical amplifier (SOA) is a promising candidate, thanks to its broad bandwidth, compact size, and low cost. In transmission systems using SOAs, due to their large noise figures, high signal launching powers are required to ensure reasonable optical signal-to-noise ratio of the received signals. Hence the SOAs are operated in the saturation region and the signals will suffer from SOA impairments including self-gain modulation, self-phase modulation, and inter channel crosstalk effects such as cross-gain modulation, cross-phase modulation, and four-wave mixing in WDM. One possibility to circumvent these nonlinear impairments is to use constant-intensity modulation format in the 1310 nm window where dispersion is also negligible. In this dissertation, differential phase-shift keying (DPSK) WDM transmission in the 1310 nm window using SOAs was first considered to increase the capacity of existing telecommunication network. A WDM transmission of 4 x 10 Gbit/s DPSK signals over 540 km standard single mode fiber (SSMF) using cascaded SOAs was demonstrated in a recirculating loop. In order to increase the transmission reach of such WDM systems, those SOA impairments must be compensated. To do so, an accurate model for quantum-dot (QD) SOA must be established. In this dissertation, the QD-SOA was modeled with the assumption of overall charge neutrality. Static gain was calculated. Optical modulation response and nonlinear phase noise were studied semi-analytically based on small-signal analysis. The quantitative studies show that an ultrafast gain recovery time of ~0.1 ps can be achieved when QD-SOAs are under high current injection, which leads to high saturation output power. However more nonlinear phase noise is induced when the QD-SOAs are used in the transmission systems operating at 10 Gbit/s or 40 Gbit/s. Electronic post-compensation for SOA impairments using coherent detection and digital signal processing (DSP) was investigated next in this dissertation. An on-off keying transmission over 100 km SSMF using three SOAs at 1.3 [micrometer] were demonstrated experimentally with direct detection and SOA impairment compensation. The data pattern effect of the signal was compensated effectively. Both optimum launching power and Q-factor were improved by 8 dB. For advanced modulation formats involving phase modulation or in transmission windows with large dispersion, coherent detection must be used and fiber impairments in WDM systems need to be compensated as well. The proposed fiber impairment compensation is based on digital backward propagation. The corresponding DSP implementation was described and the required calculations as well as system latency were derived. Finally joint SOA and fiber impairment compensations were experimentally demonstrated for an amplitude-phase-shift keying transmission.
123

Deploying Monitoring Trails for Fault Localization in All-optical Networks and Radio-over-Fiber Passive Optical Networks

Maamoun, Khaled M. 24 August 2012 (has links)
Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman’s Problem (CPP) solution and an adapted version of the Traveling Salesman’s Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.
124

Energy efficient wired networking

Chen, Xin January 2015 (has links)
This research proposes a new dynamic energy management framework for a backbone Internet Protocol over Dense Wavelength Division Multiplexing (IP over DWDM) network. Maintaining the logical IP-layer topology is a key constraint of our architecture whilst saving energy by infrastructure sleeping and virtual router migration. The traffic demand in a Tier 2/3 network typically has a regular diurnal pattern based on people‟s activities, which is high in working hours and much lighter during hours associated with sleep. When the traffic demand is light, virtual router instances can be consolidated to a smaller set of physical platforms and the unneeded physical platforms can be put to sleep to save energy. As the traffic demand increases the sleeping physical platforms can be re-awoken in order to host virtual router instances and so maintain quality of service. Since the IP-layer topology remains unchanged throughout virtual router migration in our framework, there is no network disruption or discontinuities when the physical platforms enter or leave hibernation. However, this migration places extra demands on the optical layer as additional connections are needed to preserve the logical IP-layer topology whilst forwarding traffic to the new virtual router location. Consequently, dynamic optical connection management is needed for the new framework. Two important issues are considered in the framework, i.e. when to trigger the virtual router migration and where to move virtual router instances to? For the first issue, a reactive mechanism is used to trigger the virtual router migration by monitoring the network state. Then, a new evolutionary-based algorithm called VRM_MOEA is proposed for solving the destination physical platform selection problem, which chooses the appropriate location of virtual router instances as traffic demand varies. A novel hybrid simulation platform is developed to measure the performance of new framework, which is able to capture the functionality of the optical layer, the IP layer data-path and the IP/optical control plane. Simulation results show that the performance of network energy saving depends on many factors, such as network topology, quiet and busy thresholds, and traffic load; however, savings of around 30% are possible with typical medium-sized network topologies.
125

Deploying Monitoring Trails for Fault Localization in All-optical Networks and Radio-over-Fiber Passive Optical Networks

Maamoun, Khaled M. 24 August 2012 (has links)
Fault localization is the process of realizing the true source of a failure from a set of collected failure notifications. Isolating failure recovery within the network optical domain is necessary to resolve alarm storm problems. The introduction of the monitoring trail (m-trail) has been proven to deliver better performance by employing monitoring resources in a form of optical trails - a monitoring framework that generalizes all the previously reported counterparts. In this dissertation, the m-trail design is explored and a focus is given to the analysis on using m-trails with established lightpaths to achieve fault localization. This process saves network resources by reducing the number of the m-trails required for fault localization and therefore the number of wavelengths used in the network. A novel approach based on Geographic Midpoint Technique, an adapted version of the Chinese Postman’s Problem (CPP) solution and an adapted version of the Traveling Salesman’s Problem (TSP) solution algorithms is introduced. The desirable features of network architectures and the enabling of innovative technologies for delivering future millimeter-waveband (mm-WB) Radio-over-Fiber (RoF) systems for wireless services integrated in a Dense Wavelength Division Multiplexing (DWDM) is proposed in this dissertation. For the conceptual illustration, a DWDM RoF system with channel spacing of 12.5 GHz is considered. The mm-WB Radio Frequency (RF) signal is obtained at each Optical Network Unit (ONU) by simultaneously using optical heterodyning photo detection between two optical carriers. The generated RF modulated signal has a frequency of 12.5 GHz. This RoF system is easy, cost-effective, resistant to laser phase noise and also reduces maintenance needs, in principle. A revision of related RoF network proposals and experiments is also included. A number of models for Passive Optical Networks (PON)/ RoF-PON that combine both innovative and existing ideas along with a number of solutions for m-trail design problem of these models are proposed. The comparison between these models uses the expected survivability function which proved that these models are liable to be implemented in the new and existing PON/ RoF-PON systems. This dissertation is followed by recommendation of possible directions for future research in this area.
126

Designing Survivable Wavelength Division Multiplexing (WDM) Mesh Networks

Haque, Anwar 10 April 2007 (has links)
This thesis focuses on the survivable routing problem in WDM mesh networks where the objective is to minimize the total number of wavelengths used for establishing working and protection paths in the WDM networks. The past studies for survivable routing suffers from the scalability problem when the number of nodes/links or connection requests grow in the network. In this thesis, a novel path based shared protection framework namely Inter-Group Shared protection (I-GSP) is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy. Optimization is performed on these PGs such that sharing of protection wavelengths is considered not only inside a PG, but between the PGs. Simulation results show that I-GSP based integer linear programming model, namely, ILP-II solves the networks in a reasonable amount of time for which a regular integer linear programming formulation, namely, ILP-I becomes computationally intractable. For most of the cases the gap between the optimal solution and the ILP-II ranges between (2-16)%. The proposed ILP-II model yields a scalable solution for the capacity planning in the survivable optical networks based on the proposed I-GSP protection architecture.
127

Designing Survivable Wavelength Division Multiplexing (WDM) Mesh Networks

Haque, Anwar 10 April 2007 (has links)
This thesis focuses on the survivable routing problem in WDM mesh networks where the objective is to minimize the total number of wavelengths used for establishing working and protection paths in the WDM networks. The past studies for survivable routing suffers from the scalability problem when the number of nodes/links or connection requests grow in the network. In this thesis, a novel path based shared protection framework namely Inter-Group Shared protection (I-GSP) is proposed where the traffic matrix can be divided into multiple protection groups (PGs) based on specific grouping policy. Optimization is performed on these PGs such that sharing of protection wavelengths is considered not only inside a PG, but between the PGs. Simulation results show that I-GSP based integer linear programming model, namely, ILP-II solves the networks in a reasonable amount of time for which a regular integer linear programming formulation, namely, ILP-I becomes computationally intractable. For most of the cases the gap between the optimal solution and the ILP-II ranges between (2-16)%. The proposed ILP-II model yields a scalable solution for the capacity planning in the survivable optical networks based on the proposed I-GSP protection architecture.
128

Optoelectronic device simulation: Optical modeling for semiconductor optical amplifiers and Solid state lighting

Wang, Dongxue Michael 11 April 2006 (has links)
This dissertation includes two parallel topics: optical modeling of wavelength converters based on semiconductor optical amplifiers (SOA) and optical modeling for LEDs and solid state lighting. A steady-state numerical model of wavelength converters based on cross-gain SOAs is developed. In this model, a new model of the gain coefficient is applied. Each physical variable, such as the carrier density, gain coefficient, differential gain, and internal loss, spatially varies across the SOA cavity and is numerically calculated throughout the device. Increased accuracy over previous studies is achieved by including such spatial variations. This model predicts wavelength-dependent characteristics of a wavelength converter of the SOA in both large and small signal regimes. Some key performance factors of SOA wavelength converters. A hybrid method incorporating both guided wave optics and optical ray tracing is also developed to model LEDs and solid state lighting. This method can model either single wavelength or dual-wavelength LED structures with different die shapes and packages. The waveguide and diffraction optics are mainly used to model the near-field optics inside LED chips and its vicinity and to identify guided modes and leakage modes. Geometrical ray tracing is applied to model the far-field pattern and light interactions at different material interfaces, such as LED chip structures, LED package materials, and light scattering at those rough surfaces and textures. To improve LED light extraction efficiency, different LED die shapes and device structures can also be optimized using this method. New technologies for future research on SOAs and LEDs are also proposed.
129

Demonstration of a Novel Reconfigurable Optical Add-Drop Multiplexer

Yang, Cheng-Hao 18 July 2011 (has links)
In response to the development of a next-generation networking (NGN) generalized multi-protocol label switching (GMPLS) technology is required for automatically switched optical network (ASON). Reconfigurable optical add-drop multiplexer (ROADM) is an indispensable device for the ASON, and the dense wavelength division multiplexed (DWDM) signals can be transmitted through the network under the management of the network administrator to configure dynamic customer needs and the desired quality of service (QoS). The ROADM can also increase the efficiency of utilizing the existing capacity of the optical fiber lines and can reduce or waive to set up additional optical fiber lines. This thesis studies a novel ROADM based on the arrayed waveguide grating (AWG) and the fiber Bragg grating (FBG) to overcome that the current ROADM cannot process that the input signal channels is greater than the wavelengths channels of AWG. Many types of ROADMs have been proposed and realized through different optical devices. Among these, hybrid optical circulator and FBG based ROADM is more attractive because of its low crosstalk and polarization insensitivity. However, it still suffers from many component counts and high insertion losses due to the use of many circulators and a multiplexer-demultiplexer pair. In this master thesis, we focus on demonstrating a novel ROADM and evaluating its crosstalk performance. It is found that the proposed ROADM has the advantage on extending the number of wavelength signal to make the system configurable and flexible.
130

Sintese de controladores H 'Infinito' de ordem reduzida com aplicação no controle ativo de estruturas flexiveis / Synthesis of reduced order H 'Infinite' controllers to the active control flexible structures

Sarracini Junior, Fernando 17 February 2006 (has links)
Orientador: Alberto Luiz Serpa / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-06T08:29:26Z (GMT). No. of bitstreams: 1 SarraciniJunior_Fernando_M.pdf: 6793847 bytes, checksum: effab2db853f18298e45c0a677c2ee50 (MD5) Previous issue date: 2006 / Resumo: A implementação de controladores de ordem reduzida (fixa) demanda um menor esforço de processamento e consequentemente recursos de hardware menos sofisticados em relação à implementação de controladores de ordem completa. Este trabalho mostra que a implementação prática de controladores H 00 de ordem fixa voltados para o controle de estruturas flexíveis é factível. A obtenção de tais controladores é um problema considerado difícil por ser nãoconvexo. Para contornar as dificuldades numéricas de obtenção dos controladores de ordem fixa, uma combinação do método Lagrangiano Aumentado com Desigualdades Matriciais Lineares (LMls) é utilizada. Uma estrutura de viga com engaste em uma de suas extremidades é modelada através do método de Elementos Finitos. Controladores Hoc de ordem fixa e de ordem completa são projetados com base em um modelo matemático truncado. Incertezas de modelagem e a presença de modos próximos na região de frequência de interesse dificultam a obtenção de controladores que garantam a estabilidade e um desempenho satisfatório. Para contornar estas dificuldades, usa-se a técnica de controle robusto Hoo e filtros de ponderação. Dessa forma, procura-se minimizar o efeito das incertezas e evitar que modos que não foram considerados durante a fase de projeto dos controladores não sejam excitados, garantido assim a não ocorrência do fenômeno denominado spillover. Controladores Hoo de ordem completa e ordem fixa são implementados na prática e os resultados experimentais são comparados com resultados simulados / Abstract: The implementation of reduced (fixed ) order controllers requires a smaller computational effort and. consequently, less advanced hardware resources in relation to the implementation of full order controllers. This work shows that the practical implementation of fixed order Hoo controllers directed toward the control of flexible structures is viable. Obtaining such controllers is considered a difficult task for being a non-convex problem. To overcome the numerical difficulties of attainment of fixed order controllers, a combination of the Lagrangian method increased with Linear Matrix Inequalities (LMIs) is used. A cantilever beam is modelled with the Finite Element Method. Fixed and full order controllers are designed based on a truncated mathematical model. Modelling uncertainties and the existence of near modes in the frequency range of interest make difficult the attainment of controllers that assure the stability and the performance of the system. To overcome this difficulty, the robust Hoo control and weighing filters are used. In this way, it is desired to minimize the effect of uncertainties and avoid the excitement of non-modelled modes, assuring that the spillover phenomenon does not occur. Full order and fixed order H x controllers are implemented in the practice and the experimental results are compared with the simulated results / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica

Page generated in 0.0921 seconds