Spelling suggestions: "subject:"nearsingular"" "subject:"equisingular""
1 |
Simulation of the growth of multiple interacting 2D hydraulic fractures driven by an inviscid fluidErickson, Andrew Jay 23 April 2013 (has links)
In this paper we develop a computational procedure to investigate linear fracture of two-dimensional problems in isotropic linearly elastic media. A symmetric Galerkin boundary element method (SGBEM), based on a weakly singular, weak-form traction integral equation, is adopted to model these fractures. In particular we consider multiple interacting cracks in an unbounded domain subject to internal pressure and remote stress. The growth of the cracks is driven by either linearly dependent injection pressures or volumes in each crack. A variety of crack geometries are investigated. / text
|
2 |
A computational procedure for analysis of fractures in two-dimensional multi-field mediaTran, Han Duc 09 February 2011 (has links)
A systematic procedure is followed to develop singularity-reduced integral equations for modeling cracks in two-dimensional, linear multi-field media. The class of media treated is quite general and includes, as special cases, anisotropic elasticity, piezoelectricity and magnetoelectroelasticity. Of particular interest is the development of a pair of weakly-singular, weak-form integral equations (IEs) for "generalized displacement" and "generalized stress"; these serve as the basis for the development of a Symmetric Galerkin Boundary Element Method (SGBEM). The implementation is carried out to allow treatment of general mixed boundary conditions, an arbitrary number of cracks, and multi-region domains (in which regions having different material properties are bonded together). Finally, a procedure for calculation of T-stress, the constant term in the asymptotic series expansion of crack-tip stress field, is developed for anisotropic elastic media.
The pair of weak-form boundary IEs that is derived (one for generalized displacement and the other one for generalized stress) are completely regularized in the sense that all kernels that appear are (at most) weakly-singular. This feature allows standard Co elements to be utilized in the SGBEM, and such elements are employed everywhere except at the crack tip. A special crack-tip element is developed to properly model the asymptotic behavior of the relative crack-face displacements. This special element contains "extra" degrees of freedom that allow the generalized stress intensity factors to be directly obtained from the solution of the governing system of discretized equations. It should be noted that while the integral equations contain only weakly-singular kernels (and so are integrable in the usual sense) there remains a need to devise special integration techniques to accurately evaluate these integrals as part of the numerical implementation.
Various examples for crack problems are treated to illustrate the accuracy and versatility of the proposed procedure for both unbounded and finite domains and for both single-region and multi-region problems. It is found that highly accurate fracture data can be obtained using relatively course meshes.
Finally, this dissertation addresses the development of a numerical procedure to calculate T-stress for crack problems in general anisotropic elastic media. T-stress is obtained from the sum of crack-face displacements which are computed via a (regularized) integral equation of the boundary data. Two approaches for computing the derivative of the sum of crack-face displacements are proposed: one uses numerical differentiation, and the other one uses a weak-form integral equation. Various examples are examined to demonstrate that highly accurate results are obtained by means of both approaches. / text
|
3 |
Méthodes d'intégration produit pour les équations de Fredholm de deuxième espèce : cas linéaire et non linéaire / Product integration methods for Fredholm integral equations of the second kind : linear case and nonlinear caseKaboul, Hanane 20 June 2016 (has links)
La méthode d'intégration produit a été proposée pour résoudre des équations linéaires de Fredholm de deuxième espèce singulières dont la solution exacte est régulière, au moins continue. Dans ce travail on adapte cette méthode à des équations dont la solution est juste intégrable. On étudie également son extension au cas non linéaire posé dans l'espace des fonctions intégrables. Ensuite, on propose une autre manière de mettre en oeuvre la méthode d'intégration produit : on commence par linéariser l'équation par une méthode de type Newton puis on discrétise les itérations de Newton par la méthode d'intégration produit / The product integration method has been proposed for solving singular linear Fredholm equations of the second kind whose exact solution is smooth, at least continuous. In this work, we adapt this method to the case where the solution is only integrable. We also study the nonlinear case in the space of integrable functions. Then, we propose a new version of the method in the nonlinear framework : we first linearize the eqaution by a Newton type method and then discretize the Newton iterations by the product integration method
|
Page generated in 0.0676 seconds