• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efeito do tamanho do abrasivo no desgaste de metais. / The effect of abrasive size on the wear resistance of metallic materials.

Coronado Marin, John Jairo 08 June 2010 (has links)
Neste trabalho, foi investigado o efeito do tamanho do abrasivo na resistência ao desgaste de cinco ligas metálicas. Foi usado, para este estudo, o equipamento pino contra lixa e alumina como abrasivo, com tamanho médio entre 16 µm e 192 µm. A microestrutura das ligas metálicas foi caracterizada com microscopia ótica e os mecanismos de desgaste abrasivo e os microcavacos (partículas de desgaste) foram caracterizados usando microscopia eletrônica de varredura (MEV). Em uma primeira série de experimentos, foi usado ferro fundido mesclado com carbonetos M3C (temperado e revenido a temperaturas entre 300 e 600°C). Para abrasivos pequenos, a perda de massa elevou-se com o aumento do tamanho do abrasivo. Entretanto, para abrasivos grandes, a perda de massa aumenta com inclinação menor e o mecanismo prevalente de desgaste é o microcorte. Para abrasivos maiores, o mecanismo prevalente de desgaste é microsulcamento. Em uma segunda série de experimentos, foi usado ferro fundido branco (FFB), com matrizes austenítica e martensítica. O FFB com matriz austenítica apresentou um tamanho crítico de abrasivo (TCA) de 36 µm e, para o ferro fundido martensítico, foi aproximadamente de 116 µm. A perda de massa do ferro fundido com matriz austenítica aumentou linearmente com o aumento do tamanho dos abrasivos, após o TCA a perda de massa aumenta com inclinação menor. O FFB martensítico, com menores tamanhos do abrasivo, apresentou um comportamento linear. Existe, porém, uma região de transição não-linear e achatada, quando o tamanho de partícula crítico é atingido, tornando-se independente do tamanho do abrasivo. Antes do TCA, o micromecanismo prevalente de desgaste foi microcorte e a lixa apresentou cavacos contínuos e finos e, após o TCA, o mecanismo prevalente de desgaste foi microsulcamento e apresentou cavacos descontínuos e deformados. O efeito do tamanho de abrasivo observado na perda de massa foi apresentado na energia especifica de corte e no coeficiente de atrito. Em uma terceira série de experimentos, foi usado alumínio e aço AISI 1045. O alumínio (estrutura cristalina cúbica de fase centrada) apresentou um comportamento similar ao observado no FFB com matriz austenítica, e o aço AISI 1045 apresentou um comportamento similar ao FFB com matriz martensítica. Verificou-se que, no alumínio e no aço AISI 1045, também se apresenta mudança na morfologia dos cavacos e nos micromecanismos de desgaste, observados nos materiais com segunda fase dura. Em uma quarta série de experimentos, foi usado o ferro fundido cinzento para corroborar a mudança dos micromecanismos de desgaste abrasivo e dos microcavacos com o TCA. O ferro fundido cinzento não apresentou uma transição (TCA) na curva de tamanho de abrasivo contra perda de massa. A morfologia dos cavacos foi similar para os diferentes tamanhos de abrasivos (descontínua). Para abrasivos menores, porém, apresentaram-se alguns cavacos contínuos e finos. O micromecanismo prevalente de desgaste abrasivo foi de microcorte para os diferentes abrasivos usados. Portanto, nesta pesquisa, foi demonstrado que o tamanho crítico de abrasivo está relacionado com os micromecanismos de desgaste e com a morfologia dos microcavacos. / In this research, the effect of abrasive size on the wear resistance of five metallic materials was investigated. Abrasive wear tests using a pin test on alumina paper were carried out using abrasive sizes between 16 µm and 192 µm. The wear surface of the specimens was examined by scanning electron microscopy for identifying the wear micromechanism and the type of microchips formed on the abrasive paper (wear debris). In a first series of experiments mottled cast iron samples with M 3 C carbides were tested. The samples were quenched and tempered in temperatures ranging from 300°C to 600°C. For small abrasive particles, the wear mass loss increased linearly with the increase of particle size. However, for higher abrasive sizes the wear mass loss increased much more slowly. For lower abrasive sizes the main wear mechanism was microcutting. For higher abrasive sizes, the main wear mechanism was microploughing. In a second series of experiments white cast iron with M 3 C carbide with austenitic and martensitic matrix were tested. The results show that the mass loss for cast irons with austenitic and martensitic matrices increases linearly with the increase of particle size until the critical particle size is reached. The cast iron with austenitic matrix presented a critical abrasive size of 36 µm and for the martensitic cast iron, the critical particle size was about 116 µm. After the critical particle size is reached, the rate of mass loss of the cast iron with austenitic matrix diminishes to a lower linear rate, and for cast irons with martensitic matrix the curve of mass loss is non-linear and flattens when the critical particle size is reached. It becomes, then, constant, independent of additional size increases. The abrasive paper in contact with the iron of both austenitic and martensitic matrices presents fine continuous microchips and the main wear mechanism was microcutting before reaching critical particle size, and after that it presents deformed discontinuous microchips and the main wear mechanism was microploughing. This behavior of change in rates after reaching a critical size happened not only for mass loss versus abrasive size, but it was also observed both in curves of friction coefficient and specific cutting energy versus abrasive size. In a third series of experiments aluminum and AISI 1045 steel were tested. The first (FCC structure) showed similar behavior to that observed in the white cast iron with austenitic matrix and the latter showed similar behavior to that observed in white cast iron with martensitic matrix. Both aluminum and AISI 1045 steel show similar changes in the microchips morphology and in the wear micromechanisms, something that had been observed before in materials with hard second phase. In a fourth series of experiments gray cast iron was tested in order to demonstrate the relationship between the abrasive wear micromechanisms and the type of microchips, before and after achieving critical abrasive size. The grey cast iron did not show a transition in the curve of abrasive size against mass loss. The morphology of the chips was similar for the different sizes of abrasive (discontinuous). However, smaller abrasive sizes some thin continuous microchips were formed. The main abrasive wear micromechanism was microcutting for the different abrasives sizes tested. Therefore, it was shown that the critical abrasive size is related to the wear micromechanisms and the microchips morphology.
2

Efeito do tamanho do abrasivo no desgaste de metais. / The effect of abrasive size on the wear resistance of metallic materials.

John Jairo Coronado Marin 08 June 2010 (has links)
Neste trabalho, foi investigado o efeito do tamanho do abrasivo na resistência ao desgaste de cinco ligas metálicas. Foi usado, para este estudo, o equipamento pino contra lixa e alumina como abrasivo, com tamanho médio entre 16 µm e 192 µm. A microestrutura das ligas metálicas foi caracterizada com microscopia ótica e os mecanismos de desgaste abrasivo e os microcavacos (partículas de desgaste) foram caracterizados usando microscopia eletrônica de varredura (MEV). Em uma primeira série de experimentos, foi usado ferro fundido mesclado com carbonetos M3C (temperado e revenido a temperaturas entre 300 e 600°C). Para abrasivos pequenos, a perda de massa elevou-se com o aumento do tamanho do abrasivo. Entretanto, para abrasivos grandes, a perda de massa aumenta com inclinação menor e o mecanismo prevalente de desgaste é o microcorte. Para abrasivos maiores, o mecanismo prevalente de desgaste é microsulcamento. Em uma segunda série de experimentos, foi usado ferro fundido branco (FFB), com matrizes austenítica e martensítica. O FFB com matriz austenítica apresentou um tamanho crítico de abrasivo (TCA) de 36 µm e, para o ferro fundido martensítico, foi aproximadamente de 116 µm. A perda de massa do ferro fundido com matriz austenítica aumentou linearmente com o aumento do tamanho dos abrasivos, após o TCA a perda de massa aumenta com inclinação menor. O FFB martensítico, com menores tamanhos do abrasivo, apresentou um comportamento linear. Existe, porém, uma região de transição não-linear e achatada, quando o tamanho de partícula crítico é atingido, tornando-se independente do tamanho do abrasivo. Antes do TCA, o micromecanismo prevalente de desgaste foi microcorte e a lixa apresentou cavacos contínuos e finos e, após o TCA, o mecanismo prevalente de desgaste foi microsulcamento e apresentou cavacos descontínuos e deformados. O efeito do tamanho de abrasivo observado na perda de massa foi apresentado na energia especifica de corte e no coeficiente de atrito. Em uma terceira série de experimentos, foi usado alumínio e aço AISI 1045. O alumínio (estrutura cristalina cúbica de fase centrada) apresentou um comportamento similar ao observado no FFB com matriz austenítica, e o aço AISI 1045 apresentou um comportamento similar ao FFB com matriz martensítica. Verificou-se que, no alumínio e no aço AISI 1045, também se apresenta mudança na morfologia dos cavacos e nos micromecanismos de desgaste, observados nos materiais com segunda fase dura. Em uma quarta série de experimentos, foi usado o ferro fundido cinzento para corroborar a mudança dos micromecanismos de desgaste abrasivo e dos microcavacos com o TCA. O ferro fundido cinzento não apresentou uma transição (TCA) na curva de tamanho de abrasivo contra perda de massa. A morfologia dos cavacos foi similar para os diferentes tamanhos de abrasivos (descontínua). Para abrasivos menores, porém, apresentaram-se alguns cavacos contínuos e finos. O micromecanismo prevalente de desgaste abrasivo foi de microcorte para os diferentes abrasivos usados. Portanto, nesta pesquisa, foi demonstrado que o tamanho crítico de abrasivo está relacionado com os micromecanismos de desgaste e com a morfologia dos microcavacos. / In this research, the effect of abrasive size on the wear resistance of five metallic materials was investigated. Abrasive wear tests using a pin test on alumina paper were carried out using abrasive sizes between 16 µm and 192 µm. The wear surface of the specimens was examined by scanning electron microscopy for identifying the wear micromechanism and the type of microchips formed on the abrasive paper (wear debris). In a first series of experiments mottled cast iron samples with M 3 C carbides were tested. The samples were quenched and tempered in temperatures ranging from 300°C to 600°C. For small abrasive particles, the wear mass loss increased linearly with the increase of particle size. However, for higher abrasive sizes the wear mass loss increased much more slowly. For lower abrasive sizes the main wear mechanism was microcutting. For higher abrasive sizes, the main wear mechanism was microploughing. In a second series of experiments white cast iron with M 3 C carbide with austenitic and martensitic matrix were tested. The results show that the mass loss for cast irons with austenitic and martensitic matrices increases linearly with the increase of particle size until the critical particle size is reached. The cast iron with austenitic matrix presented a critical abrasive size of 36 µm and for the martensitic cast iron, the critical particle size was about 116 µm. After the critical particle size is reached, the rate of mass loss of the cast iron with austenitic matrix diminishes to a lower linear rate, and for cast irons with martensitic matrix the curve of mass loss is non-linear and flattens when the critical particle size is reached. It becomes, then, constant, independent of additional size increases. The abrasive paper in contact with the iron of both austenitic and martensitic matrices presents fine continuous microchips and the main wear mechanism was microcutting before reaching critical particle size, and after that it presents deformed discontinuous microchips and the main wear mechanism was microploughing. This behavior of change in rates after reaching a critical size happened not only for mass loss versus abrasive size, but it was also observed both in curves of friction coefficient and specific cutting energy versus abrasive size. In a third series of experiments aluminum and AISI 1045 steel were tested. The first (FCC structure) showed similar behavior to that observed in the white cast iron with austenitic matrix and the latter showed similar behavior to that observed in white cast iron with martensitic matrix. Both aluminum and AISI 1045 steel show similar changes in the microchips morphology and in the wear micromechanisms, something that had been observed before in materials with hard second phase. In a fourth series of experiments gray cast iron was tested in order to demonstrate the relationship between the abrasive wear micromechanisms and the type of microchips, before and after achieving critical abrasive size. The grey cast iron did not show a transition in the curve of abrasive size against mass loss. The morphology of the chips was similar for the different sizes of abrasive (discontinuous). However, smaller abrasive sizes some thin continuous microchips were formed. The main abrasive wear micromechanism was microcutting for the different abrasives sizes tested. Therefore, it was shown that the critical abrasive size is related to the wear micromechanisms and the microchips morphology.

Page generated in 0.0808 seconds