• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterising the stress-life response of mechanical formed AISI-1008 steel plate components

Müller, Ruan January 2012 (has links)
The main purpose of this research project was to determine the fatigue-life behaviour of AISI 1008 sheet steel which has been mechanically formed to a radius of curvature of 120mm and then to correlate the fatigue-life behaviour to that of the parent or “as manufactured” material. During the forming process it was felt important to induce plastic strain through stretch-bending by clamping the sides of a plate sample’s (width) edges in the bending fixture before being bent by a single acting mechanical press. It was determined through actual testing that there was a decrease in fatigue-life when the mechanical formed data was compared to fatigue data of the parent material. Standard fatigue mathematical models were used to relate the actual fatigue data. Due to the material being cold formed to a radius of curvature of 120mm, residual stresses induced during the forming process played an essential role during the fatigue-life prediction calculations. The maximum relieved stress in the parent material was compressive in nature having a magnitude of 11percent of the “as manufactured” yield strength (265 MPa). For the mechanical formed material compressive residual stresses were measured on the outer surface while tensile stresses were measured on the inner surface. The difference between actual number of cycles to failure to that calculated using the standard mathematical models for the parent material, ranged between 48 percent and 18 percent and for the mechanical formed samples between 35 percent and 1percent, depending on the strain amplitude used. An important aspect of this study was to determine the criteria required for mathematical modelling of the parent material as testing occurred between the limit of proportionality and yield point. Although this aspect requires further investigation the mathematical results obtained during this study were considered to be acceptable.
2

Radioactive ion implantation of thermoplastic elastomers

Borcea, Veronica 11 September 2008 (has links)
The radioactive ion implantation wear measuring method (RII) has been used for many years as a tool to make highly sensitive real-time in-situ measurements of wear and corrosion in metallic or ceramic materials. The method consists of the controlled implantation of radioactive ions of limited decay time in a thin layer at the surface of the material. The progressive abrasion of the material results in a decline in radioactivity which is followed to monitor material losses. The application of RII to control the wear of polymers is potentially of interest, but it has been lagging behind because of uncertainties related to possible changes in material properties during and after the implantation, and to the exact shape of implantation profiles. In this thesis, we investigate these issues on two thermoplastic elastomers typically used for making the soles of sport shoes, among which one contains radiation-sensitive unsaturated bonds, using as ions 7Be, 7Li and Kr. The results of the sample characterisation indicate that the 7Be and 7Li implantations, under properly-selected conditions, do not induce significant modifications in the materials. The implantation of a stack of polymer thin films and the activity measurements performed to determine the implantation profile are also presented. The experimental results on the ion implantation profiles and the determination of calibration curves are presented and discussed in comparison with simulated results. The results indicate that it is possible to predict the implantation profile by means of simulations. This bodes well for the application of the RII method to polymer materials. In the last part, an experimental study is presented regarding the possible redistribution of the implanted 7Be after implantation. Since very few existing experimental techniques are able to detect light elements implanted in polymer targets at fluences less or equal to 1012 cm-2, with implantation depths of a few µm, a new method is presented, which implies the use of plasma etching techniques in order to remove layers of polymers and measuring the remaining activity after each step. Our results indicate that a redistribution of the implanted ions takes place during the implantation process, resulting in a scrambling of the initial implantation profile. Nevertheless, provided a suitable methodology be used, wear measurements in polymers by using the RII method are still possible, as we propose in the thesis.

Page generated in 0.0718 seconds