Spelling suggestions: "subject:"year."" "subject:"near.""
341 |
Micro- and nano- scale experimental approach to surface engineer metalsAsthana, Pranay 17 September 2007 (has links)
This thesis includes two parts. The first part reviews the history and fundamentals of surface science and tribology. The second part presents the major research outcomes and contributions. This research explores the aspects of friction, wear, and surface modification for tribological augmentation of surfaces. An effort has been made to study these aspects through gaining insights by fundamental studies leading to specific practical applications in railroads. The basic idea was to surface engineer metals for enhanced surface properties. A micro- and nano- scale experimental approach has been used to achieve these objectives. Novel principles of nano technology are incorporated into the experiments. Friction has the potential to generate sufficient energy to cause surface reactions through high flash temperatures at the interface of two materials moving in relative motion. This allows surface modifications which can be tailored to be tribologically beneficial through a controlled process. The present work developed a novel methodology to generate a functional tribofilm that has combined properties of high hardness and high wear resistance. A novel methodology was implemented to distinguish sliding/rolling contact modes during experiments. Using this method, a super hard high-performance functional tribofilm with âÃÂÃÂregenerativeâÃÂàproperties was formed. The main instrument used in this research for laboratory experiments is a tribometer, using which friction, wear and phase transformation characteristics of railroad tribo-pairs have been experimentally studied. A variety of material characterization techniques have been used to study these characteristics at both micro and nano scale. Various characterization tools used include profilometer, scanning electron microscope, transmission electron microscope, atomic force microscope, X-ray diffractometer, nanoindenter, and X-ray photon spectroscope. The regenerative tribofilms promise exciting applications in areas like gas turbines, automotive industry, compressors, and heavy industrial equipment. The outcome of this technology will be an economical and more productive utilization of resources, and a higher end performance.
|
342 |
Wear of piston rings in hydrostatic transmissionsSkytte af Sätra, Ulf January 2005 (has links)
<p>This study focuses on the wear of piston rings in a hydraulic radial piston motor. The piston ring has to satisfy increasing demands for reliability and longer service life. It has two contacting surfaces, the face and the flank, and operates under a boundary lubrication state.</p><p>This first part of the project aimed to detect and characterise piston ring wear. Measurement by weighing gives an overall value for wear defined as loss of mass. Two-dimensional form and surface roughness measurements show the distribution of wear on the piston ring face in contact with the cylinder bore and the piston ring flank in contact with the piston groove. Three-dimensional analyses, both quantitative and qualitative, allow the wear mechanisms to be identified.</p><p>The wear of piston rings from an actual hydraulic motor was characterised. As well, rig testing was performed in two different test rig set-ups, one simulating the sliding movement of the piston ring and the other the tilting movement at the end of the strokes. Wear during the running-in period was investigated, and the findings indicate that the period when this takes place is of short duration. In the long term, mild wear makes the surfaces smoother than they were when new, resulting in a very low wear coefficient. Significant levels of wear were measured on both contacting surfaces of the piston ring. In cases in which the flank exhibits more wear than the face, the wear on the flank can be reduced by proper design of the piston groove.</p><p>The second part of the project aimed to evaluate use of a textured surface for the cylinder bore counter surface and a coated surface for the piston ring. Three modelling experiments were performed to characterise the friction and wear properties under lean boundary lubrication conditions. Under such conditions, textured surfaces have the advantage of retaining more lubricant and supplying it over a longer time. Stable friction was also a distinctive feature of the textured surface. Use of a coating could also possibly reduce the amount of wear. Though a smooth surface, like a polished one, is hard to beat for a working texture, a coated surface is far ahead of a smooth uncoated one. Different manufactured and commonly used cylinder bore surfaces, including textured ones, were evaluated in the sliding movement test rig. That allowed favourable wear properties, such as lowest wear coefficient, to be determined with the use of a roller burnished surface.</p><p>A final part of the research involved simulating wear on the piston ring face throughout the entire service life of a hydraulic motor. This allowed us to determine the roles of surface roughness and coating in prolonging service life and achieving acceptable and secure piston ring operation. The model is simple and realistic, but still needs to be refined so as to correspond even better to reality.</p>
|
343 |
Design and construction of a zinc pot bearing material wear testerWare, Ryan. January 2002 (has links)
Thesis (M.S.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xi, 85 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 53).
|
344 |
Combustion Valve Wear : A Tribological Study of Combustion Valve Sealing InterfacesForsberg, Peter January 2013 (has links)
The exhaust valve system of combustion engines experiences a very complex contact situation of frequent impact involving micro sliding, high and varying temperatures, complex exhaust gas chemistry and possible particulates, etc. In addition, the tribological situation in the exhaust valve system is expected to become even worse due to strict future emission regulations, which will require enhanced combustion and cleaner fuels. This will substantially reduce the formation of combustion products that might ease the contact conditions by forming tribofilms on the contacting surfaces. The lack of protective films is expected to result in increased wear of the contact surfaces. The aim of the work presented in this thesis has been to increase the tribological understanding of the valves. The wear that takes place in the valve sealing interface and how the change in operating conditions affects it have been studied. Such understanding will facilitate the development of future valve designs. A test rig has been developed. It has a unique design with the ability to insert ppm amounts of media into a hot air flow, in order to simulate different environmental changes, e.g. varying amount and composition of combustion residue particles. PVD coated valves were evaluated in a dry atmosphere. It was concluded that although some of the coatings showed potential, the substrate could not support the thin, hard coatings. Investigations with an addition of different oils have been performed. Fully formulated oils proved to build up a protective oil residue tribofilm. This tribofilm has been in-depth analysed and proved to have similar composition and appearance as tribofilms found on low wear field tested valves. With a non-additivated oil, wear particles from the valve seat insert formed a wear particle tribofilm on top of the valve sealing surface. Without any oil the surfaces showed severe wear with wear particles spread over the surfaces. The results presented give a hint about what to be expected in the future, when the engine oils are replaced with ash less oils with reduced amount of additives and the consumed amount of oil within the cylinders are reduced.
|
345 |
Plieno paviršiaus atsparumas dilimui paveikus lazerio spinduliuote / Steel resistance to wear after laser irradiationStrumilaitė, Rūta 10 June 2005 (has links)
There was analysed the resistance to wear after laser irradiation subject to power density of middle carboniferous alloy steel and accomplished abrasive wear attrition work, when steel is interacted with higher hardness metal. There was established, that resistance to wear of steel was higher after laser irradiation, after changes in microstructure.
|
346 |
Assessment of hyperspectral features and damage modeling in bitumen flotation processBhushan, Vivek Unknown Date
No description available.
|
347 |
Measuring wall forces in a slurry pipelineEl-Sayed, Suheil Unknown Date
No description available.
|
348 |
Studies on the improvement in wear resistance of WC-Co composites by adding a pseudo-elastic TiNi phase and relevant issuesPAN, Yang Unknown Date
No description available.
|
349 |
An experimental study of microfabricated spark gaps : wear and erosion characteristicsSeriburi, Pahnit 05 1900 (has links)
No description available.
|
350 |
Design of a 3 axis wear testing device to evaluate the effect of slide to roll ratio on ultra high molecular weight polyethylene wear in total knee replacementsLow, Benjamin January 2005 (has links)
Multidirectional motion occurs in total knee replacements (TKR), is a major factor in ultra high molecular weight polyethylene (UHMWPE) wear and is a requirement for wear tester and simulators. There are three ways the femoral component can move relative to the tibial component; sliding, rolling and gliding and these are defined by the slide to roll ratio. Previous wear tester research has investigated the effects of multidirectional motion and slide to roll ratio, individually but not combined. The project aim was to design a machine that combined multidirectional motion with variable slide to roll ratio. A three station wear testing machine was designed and built featuring flexion extension, variable anterior posterior translation, variable internal external rotation and a 2KN load per station. The TKR was simplified to a cylinder on flat. Lubrication was 25% bovine serum and each station had its own recirculation system. A million cycle validation test was successfully carried out on non-irradiated UHMWPE samples using a slide to roll ratio of 1 : 0.5 and the mean wear rate was 14.7mg/10^6 cycles. Polished areas and scratches from 3rd body abrasion were observed. Magnification revealed a fine ripple pattern with a 1-2 micron periodicity. Ripples were randomly oriented, perpendicular to the primary direction of motion and a small number were running parallel to the primary direction of motion, indicative of rolling motion. The results from the validation study show that the knee joint wear tester is capable of producing wear rates and wear mechanisms similar to those observed in other wear testers and knee joint simulators and has met the aim of the project.
|
Page generated in 0.0467 seconds