• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The impact of fitbit Flex2 on hemoglobin A1C in prediabetes

Gaden, Jeremy 24 October 2018 (has links)
Type 2 Diabetes Mellitus (T2DM) is a growing healthcare problem in the United States that increases the risk for numerous health complications if left unidentified and untreated. Prediabetes, while not a clinical diagnosis, is a state of increased risk of developing T2DM based on elevated blood glucose laboratory markers such as hemoglobin A1C (HbA1C). There are numerous risk factors that predispose individuals to prediabetes and T2DM. Researchers have shown that targeting those risk factors that are modifiable, such as physical inactivity and obesity, with exercise and diet interventions can increase physical activity, decrease weight, decrease HbA1C, and decrease the incidence of T2DM in prediabetics. Tools such as pedometers that track physical activity in the form of step count can be used in interventions to improve upon these metrics. Researchers have also shown that pedometers can enhance interventions aimed at improving physical activity, weight, HbA1C, and incidence of T2DM. Recently, electronic tools that are wearable such as the Fitbit Flex2 have gained in popularity due to their additional interactive features with users. These electronic wearable devices employ behavior change techniques approved by the US Preventive Services Task Force to motivate individuals to be more physically active. Current research has shown that these electronic wearable devices enhance interventions aimed at improving physical activity, weight loss, and HbA1C in those with T2DM. Yet, there is a gap in current research that examines the effect that these devices have on HbA1C in prediabetics. The proposed study seeks to examine if the Fitbit Flex 2 wrist device, in conjunction with a standard diet and exercise intervention, improves HbA1C measures in prediabetic individuals over a one-year period. Results from the proposed study could support the future use of these devices to help decrease HbA1C measures and the risk of development of T2DM and other T2DM- health complications in prediabetics. Electronic wearable devices could alter the way in which clinicians monitor lifestyle interventions aimed at T2DM risk reduction and treatment. The use of electronic wearable devices may also serve as a more cost effective treatment alternative for those at risk of developing, as well as those diagnosed with, T2DM.
2

Context-aware Wearable Device for Reconfigurable Application Networks

Wennlund, Andreas January 2003 (has links)
Context information available in wearable devices is believed to be useful in many ways. It allows for hiding much of the complexity from the user, thus enabling simpler user interfaces and less user interaction when carrying out tasks on behalf of a user, as well as enabling network operators to provide a better interface to thirdparty service providers who will provide and deliver wireless services. Using the available context information from the wearable device, optimization of service delivery in wireless networks, such as setting up optimal delivery paths between two wearable devices, may be possible without using a third party to do negotiations. In order to fully enable context-awareness, a clear model for how to sense, manage, derive, store, and exchange context information must be defined. This will then provide the platform needed to enable development of context-aware applications that can exploit the possibilities of context-aware computing. The model must take into consideration parameters such as memory usage and power and bandwidth consumption, in order to be efficient on all types of platforms and in all types of networks. It must also be modular enough to survive replacing and upgrading of internal parts. Today little research is available about sensing context information, sensor management, APIs towards other applications, and how and how often to present context information to applications. Since context aware computing relies heavily on the ability to obtain and represent context information, sensing strategies greatly affect efficiency and performance. It is therefore of great interest to develop and evaluate models for carrying out these tasks in order to exploit the results of context awareness research. This thesis will identify and design several components of such a model, as well as test and evaluate the design, in order to be able to make conclusions to whether is lives up to the expectations stated. In order to make the proper design decisions, a full understanding of the context-awareness research area and the goals and purposes of context-aware computing are required. To understand the entire picture is crucial to find a suitable solution. Therefore, determining an efficient sensor input and management strategy, along with a powerful and flexible API for applications, which are the goals of this thesis, fully qualifies as a significant master thesis assignment. / Information om bärbara enheters omgivning som kan göras tillgänglig i enheten, tros kunna vara användbart på många sätt. Det kan möjliggöra gömmande av komplexitet från användaren, vilket ger enklare användargränssnitt och mindre användarinteraktivitet, när utförandet av uppdrag från användaren sker, eller underlätta för en nätverksoperatör som tillhandahåller ett bättre gränssnitt gentemot en tredje part, som tillhandahåller och levererar trådlösa tjänster. Genom att utnyttja tillgänglig information om omgivningen från en bärbar enhet, kan man optimera leverans av tjänster i trådlösa nätverk, så som att hitta en optimal kommunikationsväg mellan två bärbara enheter, utan att använda sig av förhandlingar med en tredje part. För att till fullo möjliggöra ett sådant omgivningsmedvetande, krävs en tydlig modell för att uppfatta, förfina, lagra och utbyta det data som beskriver omgivningen. Denna modell kan då utgöra en plattform som möjliggör utveckling av omgivningsmedvetande applikationer, som kan utnyttja och reagera på de data som beskriver omgivningen. Modellen måste ta hänsyn till parametrar så som minneskonsumtion och batteri- och bandbreddsförbrukning, för att vara effektiv på alla typer av plattformar och i alla typer av nätverk. Den måste också bestå av tillräckligt väl separerade moduler för att klara av byten och uppgraderingar av dess beståndsdelar. Idag finns endast lite tillgänglig forskning om insamlandet av omgivningsdata, hanteringen av sensorer, gränssnitt gentemot mot applikationer och hur och hur ofta omgivningsdata skall presenteras för applikationer. Eftersom omgivningsmedvetenhet beror av möjligheten att införskaffa och representera omgivningsdata, påverkar strategier för att uppfatta omgivningen både effektivitet och prestanda. Det finns därför ett stort intresse i att utveckla och utvärdera modeller för utförandet av dessa uppdrag och för att utforska forskningsresultat om omgivningsmedvetande. Denna rapport identifierar och konstruerar flera komponenter till en sådan modell, samt testar och utvärderar denna för att kunna dra slutsatser om huruvida den lever upp till de förväntningar som finns. För att kunna göra en fullgod konstruktion, krävs en ingående förståelse i forskningsområdet omgivningsmedvetande och syften och mål med densamma. Att förstå den övergripande bilden är nyckeln till en passande lösning. Konstruktion av effektiva strategier för att uppfatta omgivningen, tillsammans med ett kraftfullt och flexibelt API gentemot applikationer, vilket är målen med denna rapport, kvalificerar sig därför som ett examensarbete.
3

Secure Mutual Self-Authenticable Mechanism for Wearable Devices

Eya, Nnabuike N., Mapoka, Trust T., Shepherd, Simon J., Abd-Alhameed, Raed, Elfergani, Issa T., Rodriguez, Jonathan 03 1900 (has links)
Yes / Due to the limited communication range of wearable devices, there is the need for wearable devices to communicate amongst themselves, supporting devices and the internet or to the internet. Most wearable devices are not internet enabled and most often need an internet enabled broker device or intermediate device in order to reach the internet. For a secure end to end communication between these devices security measures like authentication must be put in place in other to prevent unauthorised access to information given the sensitivity of the information collected and transmitted. Therefore, there are other existing authentication solutions for wearable devices but these solutions actively involve from time to time the user of the device which is prone to a lot of challenges. As a solution to these challenges, this paper proposes a secure point-to-point Self-authentication mechanism that involves device to device interaction. This work exploits existing standards and framework like NFC, PPP, EAP etc. in other to achieve a device compatible secure authentication protocol amongst wearable device and supporting devices..
4

Tactile displays for pedestrian navigation

Srikulwong, Mayuree January 2012 (has links)
Existing pedestrian navigation systems are mainly visual-based, sometimes with an addition of audio guidance. However, previous research has reported that visual-based navigation systems require a high level of cognitive efforts, contributing to errors and delays. Furthermore, in many situations a person’s visual and auditory channels may be compromised due to environmental factors or may be occupied by other important tasks. Some research has suggested that the tactile sense can effectively be used for interfaces to support navigation tasks. However, many fundamental design and usability issues with pedestrian tactile navigation displays are yet to be investigated. This dissertation investigates human-computer interaction aspects associated with the design of tactile pedestrian navigation systems. More specifically, it addresses the following questions: What may be appropriate forms of wearable devices? What types of spatial information should such systems provide to pedestrians? How do people use spatial information for different navigation purposes? How can we effectively represent such information via tactile stimuli? And how do tactile navigation systems perform? A series of empirical studies was carried out to (1) investigate the effects of tactile signal properties and manipulation on the human perception of spatial data, (2) find out the effective form of wearable displays for navigation tasks, and (3) explore a number of potential tactile representation techniques for spatial data, specifically representing directions and landmarks. Questionnaires and interviews were used to gather information on the use of landmarks amongst people navigating urban environments for different purposes. Analysis of the results of these studies provided implications for the design of tactile pedestrian navigation systems, which we incorporated in a prototype. Finally, field trials were carried out to evaluate the design and address usability issues and performance-related benefits and challenges. The thesis develops an understanding of how to represent spatial information via the tactile channel and provides suggestions for the design and implementation of tactile pedestrian navigation systems. In addition, the thesis classifies the use of various types of landmarks for different navigation purposes. These contributions are developed throughout the thesis building upon an integrated series of empirical studies.
5

Design and Fabrication of Fabric ReinforcedTextile Actuators forSoft Robotic Graspers

January 2019 (has links)
abstract: Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer for human interactions, more robust in unknown environments and simpler to control than their rigid counterparts. A current problem in soft robotics is the lack of seamless integration of soft grippers into wearable devices, which is in part due to the use of elastomeric materials used for the creation of most of these grippers. This work introduces fabric-reinforced textile actuators (FRTA). The selection of materials, design logic of the fabric reinforcement layer and fabrication method are discussed. The relationship between the fabric reinforcement characteristics and the actuator deformation is studied and experimentally verified. The FRTA are made of a combination of a hyper-elastic fabric material with a stiffer fabric reinforcement on top. In this thesis, the design, fabrication, and evaluation of FRTAs are explored. It is shown that by varying the geometry of the reinforcement layer, a variety of motion can be achieve such as axial extension, radial expansion, bending, and twisting along its central axis. Multi-segmented actuators can be created by tailoring different sections of fabric-reinforcements together in order to generate a combination of motions to perform specific tasks. The applicability of this actuators for soft grippers is demonstrated by designing and providing preliminary evaluation of an anthropomorphic soft robotic hand capable of grasping daily living objects of various size and shapes. / Dissertation/Thesis / Masters Thesis Biomedical Engineering 2019
6

Design of a Knee Exoskeleton for Gait Assistance

January 2018 (has links)
abstract: The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated. A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and safe. A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment. A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg. The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton. An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2018
7

Validation of a Novel Ultra-thin Wearable Electromyography Sensor Patch for Monitoring Submental Muscle Activity during Swallowing

Cagla Kantarcigil (5929865) 12 October 2021 (has links)
<div>The aim of this study was to compare a newly developed ultrathin wearable surface electromyography (sEMG) sensors patch (patent pending, inventors: Lee & Malandraki) (i.e., experimental sensors) to commercially available and widely-used sEMG sensors (i.e., conventional sensors) in monitoring submental muscle activity during swallowing in healthy older adults. A randomized crossover design was employed to compare the performance of the experimental sensors with the performance of conventional snap-on sensors. Forty healthy older adults participated (24F; age range 53-85). Participants completed the same experimental protocol with both sensor types in a counterbalanced order. Swallow trials completed with both types of sensors included 5 trials of 5ml and 10ml water swallows. Comparisons were made on: a) signal related factors (i.e., signal-to-noise ratio, baseline amplitude, normalized amplitude of the swallow trials, and duration of sEMG burst during swallow trials); and b) safety and preclinical factors (safety/adverse effects, efficiency, and satisfaction/comfort).</div><div><br></div><div><div>In terms of signal related factors (Aim 1), we hypothesized that the signal-to-noise ratio and baseline amplitude values acquired using the experimental sensors will not be inferior to the ones acquired using the conventional sensors. These hypotheses were tested using non-inferiority tests. Moreover, we hypothesized that the normalized amplitude values and the sEMG burst duration during swallow trials will be comparable/equivalent between the two sensor types. These hypotheses were tested using equivalency tests. In terms of safety and pre-clinical factors</div><div>(Aim 2), we predicted that no adverse effects will be reported after using either type of sensors. We also hypothesized that sensor placement will be more efficient, and satisfaction/comfort level will be higher with the experimental sensors. These hypotheses were tested using paired t-tests.</div></div><div><br></div><div><div>Overall, the findings supported our hypotheses for Aim 1. Results showed that the experimental sensors did not perform inferiorly to the conventional sensors based on signal-tonoise ratio (left sensors: t(39) = 3.95, p <0.0002; right sensors: t(39) = 2.66, <i>p <0.0056</i>) and baseline amplitude values (left sensors: t(39) = -7.72, p <<i>0.0001</i>; right sensors: t(39) = -7.43, <i>p</i><<i>0.0001</i>). The normalized amplitude values were deemed equivalent for all swallow trials (5ml left: t_u = 4.25, t_l = -6.22; overall <i>p-value <0.0001</i>; 5ml right: t_u = 2.07, t_l = -4.06; overall <i>p-value <0.0224</i>; 10ml left: t_u = 5.49, t_l = -7.20; overall <i>p-value <0.0001</i>; 10ml right: t_u = 3.36 t_l = -5.28; overall <i>p-value <0.0012</i>).The duration of sEMG burst was also deemed equivalent for all variables (5ml left: t_u = 9.48, t_l = -7.25; overall <i>p-value <0.0001</i>; 5ml right: t_u = 9.03, t_l = -6.35; overall <i>p-value <0.0001</i>; 10ml left: t_u = 6.75, t_l = -6.11; <i>p-value <0.0001</i>; 10ml right: t_u = 6.58, t_l = -6.23; overall <i>p-value < 0.0001</i>).</div></div><div><br></div><div><div>In terms of safety and adverse effects (Aim 2, hypothesis #1), mild redness and itchiness occurred with the conventional sensors in six participants, whereas only one participant reported itchiness with the experimental sensors. No redness or skin irritation was observed or reported by any of the participants after the removal of the experimental sensors. In terms of time efficiency of electrode placement (Aim 2, hypothesis #2), our hypothesis was not proven, as there were no statistically significant differences in the time it took to place both sensor types; (t(39) = 1.87, <i>p= 0.9657</i>). However, as hypothesized (Aim 2, hypothesis #3) satisfaction/comfort level was significantly higher with the experimental sensors than the conventional ones, albeit with a relatively small effect size, t(39) = 1.71, <i>p = 0.0476</i>, <i>d = 0.226</i>.</div></div><div><br></div><div><div>Taken together, these findings indicate that the newly developed ultrathin wearable sEMG sensors obtain comparable signal quality and signal parameters to conventional and widely used sEMG snap-on electrodes; have fewer adverse effects associated with them compared to the conventional sensors, and healthy older adults are highly satisfied and comfortable using them. Future research is warranted to optimize the wearable sEMG sensors, before clinical trials examining the effectiveness of these sensors in the treatment of dysphagia can be initiated.</div></div>
8

A PRIVACY-AWARE WEARABLE FRAMEWORK

Mohzary, Muhammad A. 05 December 2018 (has links)
No description available.
9

DESIGN PRINCIPLES OF STRETCHABLE AND COMPLIANT ELECTROMECHANICAL DEVICES FOR BIOMEDICAL APPLICATIONS

Min Ku Kim (10701789) 27 April 2021 (has links)
The development of wearable devices to monitor biosignals and collect real-time data from biological systems at all scales from cellular to organ level has played a significant role in the field of medical engineering. The current coronavirus disease 2019 (COVID-19) pandemic has further increased the demand for remote monitoring and smart healthcare where patient data can be also be accessed from a remote distance. Recent efforts to integrate wearable devices with artificial intelligence and machine learning have transformed conventional healthcare into smart healthcare, which requires reliable and robust recording data. The biomedical devices that are mechanically stretchable and compliant have provided the capability to form a seamless interface with the curvilinear, soft surface of tissues and body, enabling accurate, continuous acquisition of physical and electrophysiological signals. This dissertation presents a comprehensive set of functional materials, design principles, and fabrication strategies to develop mechanically stretchable and compliant biomedical devices tailored for various applications, including (1) a stretchable sensor patch enabling the continuous monitoring of swallowing function from the submental/facial area for the telerehabilitation of patients with dysphagia, (2) a human hand-like sensory glove for advanced control of prosthetic hands, (3) a mechanically compliant manipulator for the non-invasive handling of delicate biomaterials and bioelectronics, and (4) a stretchable sensors embedded inside a tissue scaffold enabling the continuous monitoring of cellular electrophysiological behavior with high spatiotemporal resolution.<br>
10

An analysis of user comfort for wearable devices and their impact on logistical operations

Smith, Eboni 13 December 2019 (has links)
This dissertation is comprised of three different studies researching user perception of comfort when using wearable technology. The first study investigated the use of altered smart glasses to study comfort, preference, and performance while executing common logistical order picking and shipment putting tasks. The impact of design type (weighted front, side, or back) was investigated using comfort rating scales (CRS). There was no significant difference in device preference regardless of task type. Despite the side weighted arrangement being the most comfortable, the participants still felt uncomfortable. The second study explored modifying the weights to the six dimensions of the CRS to create a comfort score. There was a strong correlation between the weighted and unweighted comfort score. Participants identified Harm as the most important dimension. The results suggest that the participants valued importance did not make a difference in the comfort score. The final study examined the use of a wand scanner and two wearable devices to study comfort and performance while executing common logistical shipment putting tasks. The impact of the wearables was investigated using the CRS. Participants identified the ring and wand scanner to be the most comfortable and the glasses as the least comfortable device. The CRS scores showed that participants became more uncomfortable using the smart glasses over time during the completion of the putting task. These three studies provided insight for industry from a comfort perspective that will be helpful when trying to incorporate wearable technology in the work place.

Page generated in 0.0591 seconds