Spelling suggestions: "subject:"weibull degression"" "subject:"weibull aregression""
11 |
Modelos de regressão quando a função de taxa de falha não é monótona e o modelo probabilístico beta Weibull modificada / Regression models when the failure rate function is no monotone and the new beta modified Weibull modelGiovana Oliveira Silva 05 February 2009 (has links)
Em aplicações na área de análise de sobrevivência, é freqüente a ocorrência de função de taxa de falha em forma de U ou unimodal, isto e, funções não-monótonas. Os modelos de regressão comumente usados para dados de sobrevivência são log-Weibull, função de taxa de falha monótona, e log-logística, função de taxa de falha decrescente ou unimodal. Um dos objetivos deste trabalho e propor os modelos de regressão, em forma de locação e escala, log-Weibull estendida que apresenta função de taxa de falha em forma de U e log- Burr XII que tem como caso particular o modelo de regressão log-logística. Considerando dados censurados, foram utilizados três métodos para estimação dos parâmetros, a saber, máxima verossimilhança, bayesiana e jackkinife. Para esses modelos foram calculadas algumas medidas de diagnósticos de influência local e global. Adicionalmente, desenvolveu-se uma análise de resíduos baseada no resíduo tipo martingale. Para diferentes parâmetros taxados, tamanhos de amostra e porcentagens de censuras, várias simulações foram feitas para avaliar a distribuição empírica do resíduo tipo martingale e compará-la com a distribuição normal padrão. Esses estudos sugerem que a distribuição empírica do resíduo tipo martingale para o modelo de regressão log-Weibull estendida com dados censurados aproxima-se de uma distribuição normal padrão quando comparados com outros resíduos considerados neste estudo. Para o modelo de regressão log-Burr XII, foi proposta uma modificação no resíduo tipo martingale baseada no estudo de simulação para obter concordância com a distribuição normal padrão. Conjuntos de dados reais foram utilizados para ilustrar a metodologia desenvolvida. Também pode ocorrer que em algumas aplicações a suposição de independência dos tempos de sobrevivência não é válida. Assim, outro objetivo deste trabalho é introduzir um modelo de regressão log-Burr XII com efeito aleatório para o qual foi proposto um método de estimação para os parâmetros baseado no algoritmo EM por Monte Carlo. Por fim, foi desenvolvido um novo modelo probabilístico denominado de beta Weibull modificado que apresenta cinco parâmetros. A vantagem desse novo modelo é a flexibilidade em acomodar várias formas da função de taxa de falha, por exemplo, U e unimodal, e mostrou-se útil na discriminação entre alguns modelos probabilísticos alternativos. O método de máxima verossimilhança e proposto para estimar os parâmetros desta distribuição. A matriz de informação observada foi calculada. Um conjunto de dados reais é usado para ilustrar a aplicação da nova distribuição / In survival analysis applications, the failure rate function may have frequently unimodal or bathtub shape, that is, non-monotone functions. The regression models commonly used for survival studies are log-Weibull, monotone failure rate function shape, and log-logistic, decreased or unimodal failure rate function shape. In the first part of this thesis, we propose location-scale regression models based on an extended Weibull distribution for modeling data with bathtub-shaped failure rate function and on a Burr XII distribution as an alternative to the log-logistic regression model. Assuming censored data, we consider a classical analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed models. For these models, we derived the appropriate matrices for assessing the local influence on the parameter estimates under diferent perturbation schemes, and we also presented some ways to perform global influence. Additionally, we developed residual analy- sis based on the martingale-type residual. For di®erent parameter settings, sample sizes and censoring percentages, various simulation studies were performed and the empirical distribution of the martingale-type residual was displayed and compared with the standard normal distribution. These studies suggest that the empirical distribution of the martingale-type residual for the log-extended Weibull regression model with data censured present a high agreement with the standard normal distribution when compared with other residuals considered in these studies. For the log-Burr XII regression model, it was proposed a change in the martingale-type residual based on some studies of simulation in order to obtain an agreement with the standard normal distribution. Some applications to real data illustrate the usefulness of the methodology developed. It can also happen in some applications that the assumption of independence of the times of survival is not valid, so it was added to the log-Burr XII regression model of random exects for which an estimate method was proposed for the parameters based on the EM algorithm for Monte Carlo simulation. Finally, a five- parameter distribution so called the beta modified Weibull distribution is defined and studied. The advantage of that new distribution is its flexibility in accommodating several forms of the failure rate function, for instance, bathtub-shaped and unimodal shape, and it is also suitable for testing goodness-of-fit of some special sub-models. The method of maximum likelihood is used for estimating the model parameters. We calculate the observed information matrix. A real data set is used to illustrate the application of the new distribution.
|
12 |
事故傾向服從Inverse Gaussian分配時混合Weibull模式之研究黃(糸秀)琪, Huang,Hsiu-Chi Unknown Date (has links)
本篇論文主要考慮成群資料的存活分析,其特點為群內個體間具有相關性,並假定群內個體具有相同但無法觀測到的事故傾向。首先,探討事故傾向服從任一連續分配時混合Weibull迴歸模式的特性,接著,推導出事故傾向服從血Inverse Gaussian吧時之混合Weibull模式,並介紹參數的估計問題。然後,推導出群內個體是否獨立之分數檢定統計量,以分別就兩種最常見的存活資料型態一完整型態與右設限型態:檢定模式中事故傾向的效應是否存在。最後,並以實例說明分數檢定之程序。 / In this paper, we study survival analysis for grouped data, where the within group correlations are considered. It is also assumed that individuals within the same group share a common but unobservable random frailty. First, we discuss the properties of the Weibull regression model mixed by any continuous distribution. Next, we derive an Inverse Gaussan mixture of Weibull regression model, and discuss the estimation problem. Then, we derive the score test for testing independence between components within the same group, where the two most common cases are discussed the complete data case and the right censoring case. Finally, the testing procedures are illustrated by two examples.
|
13 |
含存活分率之貝氏迴歸模式李涵君 Unknown Date (has links)
當母體中有部份對象因被治癒或免疫而不會失敗時,需考慮這群對象所佔的比率,即存活分率。本文主要在探討如何以貝氏方法對含存活分率之治癒率模式進行分析,並特別針對兩種含存活分率的迴歸模式,分別是Weibull迴歸模式以及對數邏輯斯迴歸模式,導出概似函數與各參數之完全條件後驗分配及其性質。由於聯合後驗分配相當複雜,各參數之邊際後驗分配之解析形式很難表達出。所以,我們採用了馬可夫鏈蒙地卡羅方法(MCMC)中的Gibbs抽樣法及Metropolis法,模擬產生參數值,以進行貝氏分析。實證部份,我們分析了黑色素皮膚癌的資料,這是由美國Eastern Cooperative Oncology Group所進行的第三階段臨床試驗研究。有關模式選取的部份,我們先分別求出各對象在每個模式之下的條件預測指標(CPO),再據以算出各模式的對數擬邊際概似函數值(LPML),以比較各模式之適合性。 / When we face the problem that part of subjects have been cured or are immune so they never fail, we need to consider the fraction of this group among the whole population, which is the so called survival fraction. This article discuss that how to analyze cure rate models containing survival fraction based on Bayesian method. Two cure rate models containing survival fraction are focused; one is based on the Weibull regression model and the other is based on the log-logistic regression model. Then, we derive likelihood functions and full conditional posterior distributions under these two models. Since joint posterior distributions are both complicated, and marginal posterior distributions don’t have closed form, we take Gibbs sampling and Metropolis sampling of Markov Monte Carlo chain method to simulate parameter values. We illustrate how to conduct Bayesian analysis by using the data from a melanoma clinical trial in the third stage conducted by Eastern Cooperative Oncology Group. To do model selection, we compute the conditional predictive ordinate (CPO) for every subject under each model, then the goodness is determined by the comparing the value of log of pseudomarginal likelihood (LPML) of each model.
|
Page generated in 0.0786 seconds