• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Card-Shuffling Analysis with Weighted Rank Distance

Wu, Kung-sheng 24 June 2007 (has links)
In this paper, we cite two weighted rank distances (Wilcoxon rank and Log rank) to analyze how many times must a deck of 52 cards be shuffled to become sufficiently randomized. Bayer and Diaconis (1992) used the variation distance as a measure of randomness to analyze the card-shuffling. Lin (2006) used the deviation distance to analyze card-shuffling without complicated mathematics formulas. We provide two new ideas to measure the distance for card-shuffling analysis.
2

Contributions to 3D Image Analysis using Discrete Methods and Fuzzy Techniques : With Focus on Images from Cryo-Electron Tomography

Gedda, Magnus January 2010 (has links)
With the emergence of new imaging techniques, researchers are always eager to push the boundaries by examining objects either smaller or further away than what was previously possible. The development of image analysis techniques has greatly helped to introduce objectivity and coherence in measurements and decision making. It has become an essential tool for facilitating both large-scale quantitative studies and qualitative research. In this Thesis, methods were developed for analysis of low-resolution (in respect to the size of the imaged objects) three-dimensional (3D) images with low signal-to-noise ratios (SNR) applied to images from cryo-electron tomography (cryo-ET) and fluorescence microscopy (FM). The main focus is on methods of low complexity, that take into account both grey-level and shape information, to facilitate large-scale studies. Methods were developed to localise and represent complex macromolecules in images from cryo-ET. The methods were applied to Immunoglobulin G (IgG) antibodies and MET proteins. The low resolution and low SNR required that grey-level information was utilised to create fuzzy representations of the macromolecules. To extract structural properties, a method was developed to use grey-level-based distance measures to facilitate decomposition of the fuzzy representations into sub-domains. The structural properties of the MET protein were analysed by developing a analytical curve representation of its stalk. To facilitate large-scale analysis of structural properties of nerve cells, a method for tracing neurites in FM images using local path-finding was developed. Both theoretical and implementational details of computationally heavy approaches were examined to keep the time complexity low in the developed methods. Grey-weighted distance definitions and various aspects of their implementations were examined in detail to form guidelines on which definition to use in which setting and which implementation is the fastest. Heuristics were developed to speed up computations when calculating grey-weighted distances between two points. The methods were evaluated on both real and synthetic data and the results show that the methods provide a step towards facilitating large-scale studies of images from both cryo-ET and FM.
3

Distance Learning and Attribute Importance Analysis by Linear Regression on Idealized Distance Functions

Singh, Rupesh Kumar 31 May 2017 (has links)
No description available.
4

Abandoned by Home and Burden of Host: Evaluating States' Economic Ability and Refugee Acceptance through Panel Data Analysis

Tabassum, Ummey Hanney January 2018 (has links)
No description available.
5

Channel Probing for an Indoor Wireless Communications Channel

Hunter, Brandon 13 March 2003 (has links) (PDF)
The statistics of the amplitude, time and angle of arrival of multipaths in an indoor environment are all necessary components of multipath models used to simulate the performance of spatial diversity in receive antenna configurations. The model presented by Saleh and Valenzuela, was added to by Spencer et. al., and included all three of these parameters for a 7 GHz channel. A system was built to measure these multipath parameters at 2.4 GHz for multiple locations in an indoor environment. Another system was built to measure the angle of transmission for a 6 GHz channel. The addition of this parameter allows spatial diversity at the transmitter along with the receiver to be simulated. The process of going from raw measurement data to discrete arrivals and then to clustered arrivals is analyzed. Many possible errors associated with discrete arrival processing are discussed along with possible solutions. Four clustering methods are compared and their relative strengths and weaknesses are pointed out. The effects that errors in the clustering process have on parameter estimation and model performance are also simulated.

Page generated in 0.073 seconds