Spelling suggestions: "subject:"teil representation"" "subject:"weil representation""
1 |
Représentations de Weil pour les groupes de similitudes et changement de base / The representation of Weil over the similitudes groups and base changeWang, Chun Hui 03 July 2012 (has links)
La présente thèse s'inscrit dans le cadre de travaux sur la représentation de Weil. Elle consiste en trois parties. Aux chapitres 2 et 3, on généralise la correspondance de Howe aux groupes de similitudes sur un corps local non archimédien de caractéristique résiduelle impaire. Aux chapitres 4 et 5, on répond dans beaucoup de cas à une question, soulevée par V. Drinfeld, sur la représentation de Weil de GSp8(F) de restreinte à un groupe GL2(A), où A est une algègre étale sur un corps local ou fini F. D'autre part, au chapitre 5, on montre que sur un corps fini, les représentations de Weil sont compatibles au changement de base au sens de Shintani-lift. / This present thesis is working on the Weil representation. It consists of three parts. In chapter 2 and chapter 3, we generalize the Howe correspondance for the similitudes groupes over the non archimedien field with odd residual characteristic. In chapter 4 and chapter 5, we answer one question, raised by V. Drinfeld, about the restriction of the Weil representation of the group GSp8(F) to GL2(A) where A is an étale algebra over a non archimedien field or a finite field F. On the other hand, in the chapter 5, we prove that in finite field case, the Weil representations are invariant under the operator of base change in the sens of Shintani-lifting.
|
2 |
Représentation de Weil d'une paire duale de groupes de similitudes / Weil representation of dual pairs of similitude groups over a finite fieldGaborieau, Alice 01 October 2015 (has links)
Soit F une extension finie du corps des nombres p-adiques, de corps résiduel Fq. Pour un groupe réductif G sur F, les conjectures de Langlands prédisent une classification des représentations lisses irréductibles de G(F) en termes du groupe dual G^. En particulier, la donnée d’un homomorphisme de groupes duaux de H^ vers G^ doit se traduire par un transfert des représentations de H(F) vers G(F). Pour H = SO2n+1, et G = GL2n, l’injection canonique de H^ vers G^ fournit un transfert des représentations de H(F) vers G(F) qui a été obtenu récemment (pour les représentations génériques) par Jiang et Soudry.Cependant, leurs méthodes utilisent des arguments globaux et l’objet de ce travail consiste à décrire explicitement ce transfert, dans le cas particulier où n = 2 (le cas n = 1 étant déjà connu), et pour des représentations génériques de niveau zéro, lesquelles proviennent essentiellement de représentations du groupe réductif fini SO5 sur le corps résiduel de F. Pour cela, l’isomorphisme entre SO5 et PGSp4 et l’isogénie entre GL4 et GSO6 suggèrent que l’on peut réaliser un transfert entre les représentations de SO5 et celles de GL4 au moyen d’une correspondance de Howe. Nous présentons ici une généralisation des travaux de Srinivasan, qui nous permet d’obtenir la projection uniforme de la représentation de Weil associée à une paire duale de groupes de similitudes lorsque q est assez grand. / Let F be a p-adic field, and let k be its residue field. According to Langlands' conjectures, smooth irreducible representations of a reductive group G defined over F should be classified in terms of the dual groupe G^. In particular, given a homomorphism from H^ to G^, there should be a lift from the representations of H(F) to the representations of G(F). When H = SO2n+1 and G = GL2n, the canonical injection from H^ to G^ should induce a lift from representations of SO2n+1 to representations of GL2n, and this was studied by Jiang and Soudry.However, the arguments used by Jiang and Soudry are of global nature and the aim of this work is to describe explicitly this lift, when n = 2 (the case n = 1 is already known), for level zero generic representations, which are essentially determined by parameters over the finite residue field. Here the isomorphism between SO5 and PGSp4, as well as the isogeny between GL4 and GSO6 suggest that the lift could be realised by a sort of Howe correspondence.In this work, we generalize a result of Srinivasan and give the uniform projection of the Weil representation associated to a dual pair of similitude groups over Fq, when q is big enough.
|
3 |
The Kohnen plus space for Hilbert-Siegel modular forms / ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間Ren-He, Su 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19548号 / 理博第4208号 / 新制||理||1604(附属図書館) / 32584 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 池田 保, 教授 雪江 明彦, 准教授 市野 篤史 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
4 |
Représentations l-modulaires des groupes p-adiques : décomposition en blocs de la catégorie des représentations lisses de GL(m,D), groupe métaplectique et représentation de Weil / l-modular representations of p-adic groups : block decomposition of the category of smooth representations of GL(m;D), metaplectic group and Weil representationChinello, Gianmarco 07 September 2015 (has links)
Cette thèse traite deux problèmes concernant la théorie des représentations `-modulairesd’un groupe p-adique. Soit F un corps local non archimédien de caractéristique résiduelle pdifférente de `. Dans la première partie, on étudie la décomposition en blocs de la catégoriedes représentations lisses `-modulaires de GL(n; F) et de ses formes intérieures. On veutramener la description d’un bloc de niveau positif à celle d’un bloc de niveau 0 (d’un autregroupe du même type) en cherchant des équivalences de catégories. En utilisant la théoriedes types de Bushnell-Kutzko dans le cas modulaire et un théorème de la théorie descatégories, on se ramene à trouver un isomorphisme entre deux algèbres d’entrelacement.La preuve de l’existence d’un tel isomorphisme n’est pas complète car elle repose sur uneconjecture qu’on énonce et qui est prouvée pour plusieurs cas. Dans une deuxième partieon généralise la construction du groupe métaplectique et de la représentation de Weil dansle cas des représentations sur un anneau intègre. On construit une extension centrale dugroupe symplectique sur F par le groupe multiplicatif d’un anneau intègre et on prouvequ’il satisfait les mêmes propriétés que dans le cas des représentations complexes. / This thesis focuses on two problems on `-modular representation theory of p-adic groups.Let F be a non-archimedean local field of residue characteristic p different from `. In thefirst part, we study block decomposition of the category of smooth modular representationsof GL(n; F) and its inner forms.We want to reduce the description of a positive-levelblock to the description of a 0-level block (of a similar group) seeking equivalences of categories.Using the type theory of Bushnell-Kutzko in the modular case and a theorem ofcategory theory, we reduce the problem to find an isomorphism between two intertwiningalgebras. The proof of the existence of such an isomorphism is not complete because itrelies on a conjecture that we state and we prove for several cases. In the second part wegeneralize the construction of metaplectic group and Weil representation in the case ofrepresentations over un integral domain. We define a central extension of the symplecticgroup over F by the multiplicative group of an integral domain. We prove that it satisfiesthe same properties as in the complex case.
|
5 |
Vector-Valued Mock Theta FunctionsWilliams, Clayton 01 August 2022 (has links)
Ramanujan introduced his now celebrated mock theta functions in 1920, grouping them into families parameterized by an integer called the order. In 2010 Bringmann and Ono discovered generalizations of Ramanujan's mock theta functions for any order relatively prime to 6; this result was later strengthened by Garvan in 2016. It was also shown that by adding suitable nonholomorphic completion terms to the mock theta functions the family of mock theta functions corresponding to a given order constitute a complex vector space which is closed under the action of the modular group. We strengthen the Bringmann, Ono, and Garvan result by constructing a vector-valued modular form of weight 1/2 transforming according the Weil representation for orders greater than 3 by introducing an algorithm which simultaneously numerically constructs the form and proves its transformation laws. We also explicitly construct the 7th order form and prove analytically that it has the proper modular transformations. It is conjectured the same method will apply for other orders.
|
6 |
ON MULTIPLIER SYSTEMS AND THETA FUNCTIONS OF HALF-INTEGRAL WEIGHT FOR THE HILBERT MODULAR GROUP SL₂(o) / マルチプライアーシステムとヒルベルトモジュラー群SL₂(o)に関する重さ半整数のテータ関数Noguchi, Hiroshi 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23679号 / 理博第4769号 / 新制||理||1683(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 池田 保, 教授 雪江 明彦, 准教授 市野 篤史 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
7 |
Twistorový operátor v symplektické spinorové geometrii / Twistor operator in symplectic spin geometryDostálová, Marie January 2011 (has links)
The topic of the diploma thesis is symplectic spinor geometry. Its re- search was started by D. Shale, B. Kostant and K. Habermann. We focus our attention to one of the so called symplectic twistor operators introduced by S. Kr'ysl. We investigate the action of this operator on real even dimensio- nal vector spaces considered as symplectic manifold, its invariance properties and regularity. We describe a part of the kernel of the symplectic twistor operator when acting on symplectic spinors on R2. The kernel forms a repre- sentation of the so called metaplectic group (double cover of the symplectic group). 1
|
Page generated in 0.1032 seconds